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CHAPTER ONE

INTRODUCTION

1.1 OBJECTIVE

The objective of this research was to assess the ability of surface wave

measurements and the SASW technique to determine the elastic properties and

detect crack damage in beam and column concrete elements.

1.2 APPROACH

The modulus of elasticity was detected from the phase velocity given by the

dispersion curve as a function of frequency. Damage was detected by a change in

the dispersion curve between undamaged and damaged states. The SASW

(Spectral Analysis of Surface Waves) technique was used to calculate the surface
wave dispersion curve (phase velocity vs frequency).

1.3 SCOPE

This work was made up of both an analytical study and an experimental study. The

goal of the analytical study was to determine the model sophistication necessary to

represent a surface wave propagating in a beam. Two models were used. The first
model was a time domain solution of beam theory using modal analysis. The
second model was a two dimensional finite element model which used constant

average acceleration, plane stress constitutive equations, eight noded quadratic
rectangular elements, and a consistent mass matrix.. After determining the

necessary modelling sophistication, a crack was introduced in the beam and a
parametric study, similar to the experimental study, was run.

1
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Experimentally, a parametric study was run on 2 1" x 6" x 6" concrete test

specimens. The damage form studied was vertical cracks. Crack depths of 1 ", 2",

and 3" were used. Two receiver spacing were used: 3" and 6". The location of

the source-receiver array relative to the crack was varied, such that the crack was

either outside the array, between the receivers, between the source and first

receiver, or on the bottom face with the array on the top face.

The goal was to determine how the crack affected the dispersion curve and evaluate

if the change in the dispersion curve could be used for detecting damage.

1.4 WHY

There are many forms of damage to reinforced concrete members such as cracking

and crushing of the concrete, yielding and fracture of the reinforcement, loss of

bond between the concrete and steel, honeycombing and voids as well as
deterioration due to the environment.

Most forms of damaged due to structural overload and deterioration result in

cracking. The need to study damage detection has been identified by several

authors. In 1989, a working group on "Global Structural Diagnostics", at the

conference on the Nondestructive Evaluation for Performance of Civil Structures,
identified the need for "Better techniques for detection of flaws or defects inside

structural members". At the same conference, the group on "Controlling the

Construction Process", identified the need to "Develop methods to check,

automatically, dimensional accuracy and presence of cracks in precast members."

When assessing the ability of surface waves and the ability of the SASW technique

to detect damage, crack damage was chosen as the initial damage form because it
represents a limiting case. If the method cannot detect cracks, then the method

would probably not detect other forms of damage such as honeycombing and
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voids.

In the report, "Impact Echo: A Method for Flaw Detection in Concrete Using

Transient Stress Waves", Sansalone and Carino showed that compression waves

could be used to detect imperfections. Hence the use of stress waves is a viable

technique.

Surface waves and the SASW method have several features which make the

technique attractive. They include:

1. When an impact is used to create the source wave, the majority of energy

from the impact is imparted in the form of surface waves with the

remainder going into body waves.

2. The damping due to geometrical spreading for surface waves

(cylindrical) is smaller than for body waves (spherical).

3. The SASW method only requires access to one side of the member.

4. SASW also provides information about the depth of the beam; due to the

dispersive nature of the surface wave, different wave lengths sample

different depths. Impact-echo and through transmission techniques

only provide information about the ray path between the source and

receiver.

5. The SASW method does not require estimation of the compression wave

velocity as the impact-echo method does.

1.5 ORGANIZATION

This dissertation consists of seven chapters and three appendices. Chapter Two
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provides background on the SASW method. Chapter Three reviews the analytical

methods used to model the problem. Chapter Four presents data on generating the

waveform experimentally. It includes the test matrix and a review of the equipment

and test procedures used experimentally. Chapter Five shows data on an intact

section. Chapter Six shows the effect of vertical crack damage on the dispersion

curve for various source receiver crack configurations. Chapter Seven contains the

conclusions and makes recommendations for future research. Appendix A is a

review of the basics of stress waves. Appendix B is a review of Fourier

transforms. Appendix C is a review of other stress wave methods for crack

detection and sizing.



CHAPTER TWO

SASW (_Spectral Analysis of Surface Waves)

2.1 OVERVIEW OF THE METHOD

SASW stands for Spectral Analysis of Surface Waves. The goal of SASW is to
determine the dispersion curve which is a plot of the phase velocity versus
wavelength or frequency. (It is implied that there is a one to one correspondence

between the wavelength and the frequency)

The process considers two simultaneous time records resulting from an impact
generated surface wave and at a given separation. Using the time records, the
phase of the cross power spectrum can be calculated. In this form, the cross power
spectrum phase varies between t and -t and must be unfolded to get the proper

phase diagram (This is discussed in section 2.4). The unfolded phase diagram

represents the phase difference between the linear spectra of the two records. The
unfolded cross power spectrum phase is then used to calculate the velocity and
wavelength for each frequency. This process is shown schematically in Figure 2.1
- 1 and a graphical example of the phase, unfolded phase, and coherence (coherence

is a measure the data quality) is given in Figure 2.1 - 2. Figure 2.1 - 3 shows the
resulting velocity vs frequency, wavelength vs frequency, and velocity vs
wavelength diagrams.

In this work, the dispersion curve used will be velocity vs frequency. This is
because in the range of interest of 30 kHz to 100 kHz the results are better on the
velocity vs frequency diagram than on the velocity vs wavelength plot.

5
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Im

TIME RECORD 1 TIME RECORD 2

CROSS POWER
SPEC'TRUM

PHASE

(REC...SPACING 36 * FREQ)
VELOCrrY

PHASE

(REC-.SPACING *360)
WAVELENGTH

PHASE

Figure 2.1 - 1 Overview of SASW Method
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Figure 2.1 - 3 Phase Velocity vs Frequency, Wavelength Vs Frequency, and
Phase Velocity vs Wavelength Diagrams
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2.2 DERIVATION OF THE VELOCITY AND WAVELENGTH

Given the phase shift (calculated from the cross power spectrum) and the
frequency, the time to transverse the path can be calculated as:

t(f) 0- )=0f

(f) 27Ef

where 0(f) is the phase in radians. Since the distance,d, is known between the

receivers. The velocity can be calculated as:

d - d2= f

t(f) -

Finally, using the relationship, V = . * frequency, the wavelength is calculated:

V d2lC

f (f)

2.3 INTERPRETATION OF THE PHASE DIAGRAM

The cross power spectrum is a complex number which can be represented by its

amplitude and phase, where

S12 (f) = I S1 2 (f) Iexp(i0 12(f))

and
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1 S 1 2 (f) I = 'llmag S12(f + Real S 1 i2

0112(f) = tan l[' I gS 2f

The phase information, 1)12 (f), is the phase difference as a function of frequency

between the two measuring points. That is

0112 (f) 4(f) - 0 f

where 01 (0) and 02 (f) denote the phases of the Fourier transform of time records 1

and 2 respectively. Figure 2.3 -1 illustrated this point using the the unfolded

phase diagram.

AMPLTLTDE VS FREQUENCY
21" x 6" x 6"

XL: 14" XR 1: 11" XR.2: 8"
EXPONENTAL WIrNDOw

-0

-40

o -50 L2 ...

-60 -.........

0 2.000 104 4.000 le~ 6.000 104 8.000 le~ 1.000 10
FREQUENCY (HZ)

Figure 2.3 - 1 Unfolded Linear Spectrum Phase and Cross Power Spectrum Phase
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2.4 UNFOLDING THE PHASE DIAGRAM

In the SASW method, determining the proper phase shift for each frequency is

important. The proper phase is the actual number of cycles of a given wavelength

for a given distance between two points.

As the wavelength decreases (frequency increases) for a homogeneous material,

the smaller wavelengths must go through more cycles to transverse a given

distance. Hence the cross power spectrum phase diagram should increase/decrease

monotonically. However, when the cross power spectrum is calculated, it only
varies between 7t and - t as seen in Figure 2.1 - 2. There are points in the phase

diagram where there Is a jump discontinuity as the phase diagram goes from -it to

7t. These jump discontinuities are referred to as 27t phase ambiguities. As such the

cross power spectrum phase cannot be used "as is" to calculate the velocity and
wavelength. The phase diagram must be unfolded and the 27t phase ambiguities

eliminated. The phase in the unfolded phase diagram is equal to the calculated
phase plus n27t where n is an integer and must be determined at each frequency.

Figure 2.1 - 2 also shows the unfolded phase, where the 2t phase ambiguities are

eliminated.

In addition to 21t phase ambiguities, low coherence affects the way a phase diagram

is unfolded. Coherence is a measure of the data quality. When the coherence is
low, a decision to include or exclude that data must be made and is based on

judgement. In the range of low coherence, additional 2t phase ambiguities are

generally introduced. As a result, if the data is excluded, the proper phase

ambiguities must be accounted for before the unfolded phase is used to calculate the

dispersion curve.

Figure 2.4 - 1 shows a good phase diagram with good coherence. Figure 2.4 - 2

shows a phase diagram with low coherence at 10 kHz. Figure 2.4 - 3 shows the

unfolded phases from Figures 2.4 - 1 and 2.4 - 2 and the subsequent dispersion

curves. In the comparison of the unfolded phase diagram, there is a 21t phase shift
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around 10 kHz, the point of low coherence, between the data with good coherence

and the data with poor coherence. The data with good coherence gives the proper
velocities and wavelengths. The data with poor coherence overestimate the phase
by 2n for frequencies over 10 kHz and hence, underestimate the corresponding

velocities and wavelengths. To deal with these data, the data with low coherence
would be masked in the record. This will insure the proper phase diagram by

eliminating the additional 2n introduced at the point of low coherence. Figure 2.4 -

4 shows the masked unfolded phase diagram and subsequent dispersion curve.
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Figure 2.4 - I Cross Power Spectrum Phase and Coherence Diagram of Data with
Good Coherence
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Figure 2.4 -2 Cross Power Spectrum Phase and Coherence Diagram of Data with
Poor Coherence at 10 kHz
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Figure 2.4 - 3 Unfolded Cross Power Spectrum Phase and Dispersion Curve from
Phase Diagrams in Figures 2.4 - 1 and 2.4 - 2
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UNFOL-DED PHASE VS FREQUENCY
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Figure 2.4 - 4 Unfolded Cross Power Spectrum Phase and Dispersion Curve from
Phase Diagrams with Phase masked around 10 kJ-z, Point of Low Coherence
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2.5 WINDOWS

Windows are necessary to get the proper phase diagram and affect the smoothness

and magnitude of the spectrum. Time records are multiplied by the window to

reduce leakage before the discrete Fourier transform is applied (The discrete Fourier

transform is performed using an efficient algorithm called a Fast Fourier Transform

(FFT)). Leakage is a result of taking a finite length record in the discrete Fourier

transform and is always present for finite length data. The types of windows most

often used are the Hanning, uniform, and exponential windows defined below:

Hanning: = I cos (2--t )

Rectangular: = 1 0<t <T

= 0 O.W.

Exponential = Exp ( - t)

where T is total record length, t is time, and t is a parameter to shape the

exponential record.

The Hanning window is used for periodic and random data. The exponential

window is used for decaying processes.

To better understand the effect of windows, an example is given in graphical form,

to show the window shape in time and frequency, how the window affects the
amplitude and magnitude of the linear spectrum, and finally how the cross power

spectrum phase is affected.

The time domain representation and the FFT of the Hanning, rectangular

(uniform), and exponential windows are given in Figure 2.5 - 1, Figure 2.5 - 2,
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and Figure 2.5 - 3, respectively.

The cross power spectrum phase diagram was calculated using the Hanning

window with lengths of 1024, 512, and 256 micro seconds, a rectangular window

with lengths of 1024, 512, and 256 microseconds, and an exponential window
with r= 256, 128, and 64 microseconds. The time data used for this example is

acceleration data from finite element analysis of a 21" x 6" beam. The load is at
14" from the left end. The first receiver is at 11" and the second receiver is at 8".

For each case, only the windowed time record for the first receiver, the FFT of that

time record and the phase diagram are presented in Figures 2.5 - 4 to 2.5 - 12. The

best cross power spectrum phase diagram was calculated using an exponential
window with r=64 microseconds

Figures 2.5 - 13 to 2.5 - 15 show a comparison of the Fourier amplitude spectrum

for three different window lengths for the Hanning, rectangular and exponential
windows respectively. From this it can be seen that windows affect the

smoothness and magnitude of the linear spectrum.
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Figure 2.5 - 2 Rectangular Window: Time and Frequency Diagrams
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Figure 2.5 - 3 Exponential Window: Time and Frequency Diagrams



22

A0C1M-f A-1CN %IS T iNIE
HANNN %'.T?JE)-(3%%;-OO01024 SEC

21". 6",

-200

r-AN N soDO ..0010 4 .SE

70

-200A

0 0.0002 0.04 0S0 00008 -001 .0012O

^MPIhASEin VS FE-QENY-
HA1.NNINO) N%1.'N"JW ;.001024 SEC-

50

0 2 .000 000 2.0 6.000 10'7500 10 1 000o 1

FR-EQUENC (HZ)EQJINC

Figure ~ ~ HNNC 2.5-D -. 012 4Sann idw(12 e)WnoEdieReod
Frequency~~~~~~~2 Diga-n hs sFeuny m(1 x 6" x 6")XLR1
XR2~CL (14 ?M 1 1 8)AayiclDt



23

-LNNINO WIJI)OW - 000512 SEC
21 " 6 x :

.C :1 " :h I

2000

0

0ANN 0.ND02 0.04 000 0.0012 SEC 0 .0

21

70

400 ..... ............. .......

0 2001.25 00 10 0 2 .000 3.75*0010 1.000 205

FREQUEN CY (1-Z)

Diagrm an Phas vs requecy: ea 21" x 6" ",X-R-R 1-1
8), ~~3: AnlyialDaa



24

VIA.NN1NCI WNVIENKY) - .000256 SUC
21"' . . 6"

300- -C, 4 1

2 0 - ....... ...... -... '*--' . .. ---- -- - - - - -

-100 4 .. ......... ............ .........

0 0 00)02 0.0004 0.000 0.CoOO 0.001 0.0012
TL.E(SEC)

ANoI--rLIOP VS FR.JEQUENC-
HAL.NNIENC3 %%A'EqDCI- - .000256 SE-C

21" x 6' 6'
7L:14** M : 11-

7000-II -'-

4400...... ......... ....

2000- ... .........

.0

0 1.2S0103 2.50010 3 3.750105 5.00010,5
FREQUEN4CY (HTZ)

HI.NNINCI W04.>DCIW - .000256 SIEC-
21" 36 6x6-

XL-14" 3M1:

4-4

-3

-2-4

0 1.250 10YS 2.500 10 3 3.750 10 3 5.000 10 5
FREQUENCNY (HZ)

Figure 2.5 - 6 Hanning Window (256 pgsec) Windowed Time Record, Frequency
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8), Analytical Data.
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Figure 2.5 - 10 Exponential Window (256 pisec) Windowed Time Record,
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Figure 2.5 - 13 Frequency Diagram: Comparison of Three Different Time
Duration Using a Hanning Window, Beam (21" x 6" x 6"), XL-XR1I-XR2 (14 -
11 - 8), Experimental Data, Instrumented Hammer.
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Figure 2.5 - 14 Frequency Diagram: Comparison of Three Different Time
Duration Using a Rectangular Window, Beam (21 " x 6" x 6"), XL-XR I-XR2 (14
- 11 - 8), Experimental Data, Instrumented Hammer.
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Figure 2.5 - 15 Frequency Diagram: Comparison of Three Different Time
Duration Using a Exponential Window, Beam (21 " x 6" x 6"), XL-XR1I-XR2 (14
- 11 - 8), Experimental Data, Instrumented Hammer.
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2.6 RECOMMENDATION ON WINDOW LENGTH

The primary window used in this dissertation was an exponential window, with 't =
80 to 150 micro seconds. Two criteria were used in selecting, t. The first was the

smoothness of the cross power phase diagram. The second criterion was a
monotonically increasing/decreasing phase diagram for linear spectra of each
record. The cross power spectrum phase diagram is very erratic when using a long
t, and this makes it hard to determine the proper 27c phase shifts. If a very short "t
is used, the linear spectrum phase diagram will not be monotonically
increasing/decreasing at the higher frequencies. When this happens, the phase no
longer monotonically increases, but essentially has a constant value over the range
of frequencies in which there is no energy. Figure 2.6 - 1 shows the linear
spectrum phase diagram and the cross power phase diagram when proper windows

are used. Notice also that the cross power spectrum is equal to the difference
between the linear spectra. Figure 2.6 - 2 gives an example where t is too short.
In this case, linear spectrum one is properly windowed but linear spectrum two is
not and the record starts to fall apart at about 25000 Hz. The cross power spectrum
in this figure is an average of five measurements with improper windowing.

Hence, the recommended window length for each record should be just long
enough to insure sufficient energy in the linear spectrum over the entire frequency
range. This, in turn, will also insure the smoothest possible cross power spectrum

phase diagram.
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Figure 2.6 - 1 Linear Spectra Phase and Cross Power Spectrum Phase with a
Proper Exponential Window Duration. Beam (21" x 6" x 6"), XL-XR I XR2 (14 -
1.1 - 8), Experimental Data, Instrumented Hammer.
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Figure 2.6 - 2 Linear Spectra Phase and Cross Power Spectrum Phase with Too
Short of a Exponential Window Duration. Beam (21" x 6" x 6"), XL-XR I-XR2
(14 - 11 - 8), Experimental Data, Instrumented Hammer.
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2.7 PARAMETERS INVOLVED

The operator's objective is to set up the equipment and process the data in a manner

which will enhance the detection of damage. As such, the operator must know how

the different variables affect the measurement.

For any testing situation, the geometric and material properties are those insitu. The

test operator has control over the load location and duration, the type of receivers

(acceleration, velocity, or displacement transducers), receiver spacing, and location

with respect to other surfaces. The operator also controls the data processing which

includes the frequency range of interest, the type and length of the windows used,

and the number of repetitions per measurement. Finally the operator controls the
interp;etation of the data. The effect of each parameter on the dispersion curve is

investigated in the following sections.

The dispersion curve is often defined as the Velocity vs. Wavelength, but

throughout this report, Velocity vs Frequency will be used.



CHAPTER THREE

ANALYTICAL FORMULATION

To use the SASW technique two simultaneous time records are necessary. In this

study time response records were generated analytically and experimentally. The

analytical techniques used include a modal analysis of a conventional one

dimensional beam model, a two dimensional finite element model and a two
dimensional plane stress analysis of surface waves in a homogeneous plate of finite
thickness. The modal analysis solution is discussed first and the results obtained

applying the SASW technique to the computed records are compared with the
theoretical dispersion curve for flexural waves. The finite element formulation is
presented next. The effect of mesh size, boundary conditions and position of

source and receivers is investigated. The results are then compared to those of the
plane surface wave solution.

3.1 MODAL ANALYSIS OF A SIMPLY SUPPORTED BEAM

Modal analysis of a simply supported beam was used first to assess the validity of a

one dimensional model and the difference between flexural and surface waves, a
review of the equations of motion and their solution for steady state condition

(forced vibration) as well as for a transient (including the free vibration terms) is
presented. Finally a comparison is made of an SASW derived dispersion curve

compared to the theoretical dispersion curve for flexural waves in a simply

supported beam using beam theory.

3.1.1 EQUATION OF MOTION

The equation of motion for a beam is:

37
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Ea t = p(x,t)

where:

E: elastic modulus

I: area moment of Inertia

M. mass per unit length
Rtt

p(x,t) = 8(xi) sin (4) for 0< t < TD

xj: load location

TD: load duration

3.1.2 SOLUTION

To solve for y(x,t), the forced vibration problem must be solved. This gives the

solution up to t=TD. After t=TD, the free vibration problem must be solved. The

initial conditions for the free vibration problem are the displacement and velocity at

t=TD from the forced vibration problem.

In general, the free vibration solution is:

00 n7cx
y (x,t) = Y, sin (-U-) [ (C)n cos .nt + (C2)n sin (Ont]

n=1

Given y (x,O) = p(x) and j (x,O) = T (x)

2 = L nx(C On = E p (x) sin (--C-) dx
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L
2 nix

(C2)n = - F(x) sin -) dx
CO L

(On = (nK)2  EI.

M L4

3.1.3 SOLUTION OF FORCED VIBRATION PROBLEM

For the forced vibration problem, where t < TD:

oo . nicx Q
Y(x,t) = Y sin (-U-) Ka [sin t + - sin (Ont]

n=1 (On

Y(x,t) = Y sin (__) Kn [ Q cos 92t - 9 cos (Ont]n=l

00

Y(x,t) = Y, sin ( _ Kn [- Q2 sin 92t + K n sin nt]

where

[sin( n1)x 2 1
Ku 2 M-L

((On2 _Q2)

-- (mr)2TDt L4
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3.1.4 SOLUTION OF FREE VIBRATION AFTER LOAD ENDS

For the free vibration problem after the impulse, t > TD:

oo nicx
Y(x,t) = Y sin (---) [(C 1 )n cos COntl + (C2)n sin (Onti ]

n=1
00 nicx

Y(x,t) = I sin ( L - (On (C1)n COS (Ontl + (On (C2)n sin O.nti I
n=1
00 nlcx 2

Y(x,t) = I sin (-) [- (On 2 (CI)n COS (Onti - (On (C2 ) sin WOnt I
n=1

where

(C)n = K sin (On TD)J

NC2n = sm"--- fI-+L (n D

snn7cx1 2 1

( (O2 Q 2)

TC (On = (n 7r)2.N f-T
TD, L4

TD = Load duration

tj = t - TD xl Load location
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3.1.5 COMPARISON OF SASW WITH THEORETICAL DISPERSION CURVE

FOR FLEXURAL WAVES IN A SIMPLE SUPPORTED BEAM.

A comparison was made between the dispersion curve determined from the SASW

method with the time records generated using modal analysis of beam theory and

the theoretical dispersion curve for flexural waves in a simply supported beam.

This allows the verification of the SASW method. Verification of the process

shows that it works, inspires confidence, and provides the ability to evaluate the
limitations of the process.

The theoretical dispersion curve is given by (Meirovich,pg355)

Velocity = (3.1.5- 1)

substituting

Velocity = X * frequency

and rearranging, velocity as function of frequency is,

Velocity = 2f 4 KI"_

For this example, a twenty foot, simply supported beam was used, as shown in
Figure 3.1.5 - 1. A half pulse of a sine function was used for loading purposes.

The time duration (TD) was 50 micro seconds. One hundred and fifty modes were

used in the calculation. The time step was I micro second and 1024 points were
calculated, resulting in a FFT resolution of 976.6 Hz. Three different spacings
were used to calculate a dispersion curve and compared to the theoretical dispersion

curve (Figure 3.1.5 - 5). For a one foot spacing, the beam was loaded at x=10'

and the receivers were at x=l 1' and x=12'. The response at x=l 1' and x=12' is
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given in Figure 3.1.5 - 2. For a two foot spacing, th, i, im was loaded at x=10'

and the receivers were at x=12' and x--14'. The respun -at x=12' and x=14' is

given in Figure 3.1.5 - 3. For a three foot spacing, the beam was loaded at x=10'

and the receivers were at x=13' and x-16'. The response at x=13' and x=16' is

given in Figure 3.1.5 - 4. After processing the time records, the dispersion curves

were calculated and compared to the theoretical dispersion curve. The comparison

is shown in Figure 3.1.5 - 5.

As can be seen, there is very good agreement between the theoretical dispesion

curve and the dispersion curve determined from modal data using the SASW

method.

For the first four frequencies in the FFT, Table 3.1.5 -1 gives a wavelength

comparison between theory and SASW. It shows the range of error for this

example. The greatest errors are at the lowest frequencies, and the error decreases

as the frequency increases. It should also be noticed that the agreement is perfect

for a 3' spacing and deteriorates as the spacing becomes smaller. This is true up to

approximately 50 kHz at which point the SASW dispersion curve shows minor

fluctuations about the theoretical curve.
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Figure 3.1.5 - 1 Configuration and Load Pulse
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Table 3.1.5 -1 Wavelength Comparison between Theoretical and SASW data

FREQ 1' 2' 3' Theory

(HZ) X SASW SASW SASW
Theory Theory Theory

977 6.95 1.53 4.39 0.96 4.55 1.0 4.55

1953 4.39 1.09 3.85 0.95 4.04 1.0 4.04

2929 3.5 1.01 3.33 0.96 3.46 1.0 3.46

3096 3.01 0.997 2.96 0.98 3.02 1.0 3.02

As can be seen by these comparisons, the SASW method is a viable method for

calculating the dispersion curve from response records. It also shows the

dispersion curve determined using modal analysis data is the dispersion curve of the

flexural waves in the beam and not the surface waves.

3.2 FINITE ELEMENT MODEL

The fimite element method was also used to model the beam in two dimensions and

to evaluate the effectiveness of the method to get a surface wave dispersion curve.

To solve wave propagation and dynamics problems, one approach is to discretize in

time and in space. Newmark's Pi method was used to discretize in time, and the

finite element method was used to discretize in space. A two dimensional finite

element program was written. It used eight noded quadratic rectangular elements,

plane stress constitutive equations, the constant average acceleration method of step

by step integration, and a consistent mass matrix.

Background on the finite element method is given and a discussion of the

importance of the mesh size is also presented.



49

3.2.1 NEWMARK BETA TIME ITERATION

Newmark's P method is a time step iteration technique to solve dynamic and wave

propagation problems, where the next time step is based on current displacement,

velocity and acceleration data. Given the equilibrium equation:

M Uh+I + KUn+I = Fn+1 (3.2.1- 1)

and

Un+l = Un + [ (1-a) Un + a UJn+l ] At (3.2.1-2)

12

Un+1 = Un + Un At +[ (-13)Un + 3 Un+ I At2

(3.2.1 - 3)

where

M: Mass Matrix

K: Stiffness Matrix

F: Force Vector

Un: Displacement Vector at time "n"

Un: Velocity Vector at time "n"

U: Acceleration Vector at time "n"

Solving (3.2.1- 3) for U h+, gives:

~i+ , [ Un+ I - Un - Un3At .2.-) n

(3.2.1 - 4)
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(3.2.1 -4) into (3.2.1- 1) leads to

M [-L1 Un+l -Un - UnAt-( A-132AUn )]+ KUn+I =Fn+I

(3.2.1 - 5)

Solving (3.2.1 - 5) for Un+I, leads to (3.2.1 - 6) a system of equations where the

only unknowns are Un+1:

[K + M] Un+ 1

=Fn+ I + M 1 Un + Un At + ( 3A t 2 n

(3.2.1 - 6)

The system of equations (3.2.1 - 6) is solved using Gauss Elimination. After

solving for Un+1, (3.2.1 - 7) and (3.2.1 - 8) are used to solve for 4h+1, Un+l

ih+i- L[2 Un+l - Un - UnAt (1_1)Un ]
(3.2.1 - 7)

bn+l = ibn + [(1-a)Uh + a 4+1 ] At

(3.2.1 - 8)

For the next time step, equations (3.2.1 - 6) through (3.2.1 - 8) are repeated.

A number of different methods are included in the Newmark 0 technique. For

instance:



51

1 1
Constant Average Acceleration • = I3=• Unconditionally Stable

1 1
Linear Average Acceleraticn" . = 3= - : Conditionally Stable

The constant average acceleration method is unconditionally stable numerically,

while the linear average acceleration is conditionally stable. The stability condition
for the linear average acceleration requires that the time step,At, be less than the

period of the highest frequency divided by 7E. ( At < Thighest frequency)

it

3.2.2 STIFFNESS MATRIX

Using the energy expression for the strain energy:

vJ p T G dvol

and substituting

G =D E

C=BU

ET = UT BT

results in

Strainenergy = UT[ BT D B dvol U

where the stiffness matrix is
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K f BTDB dvol
vol

and U,B,D are defined below and fi is a shape function defined in section 3.2.6

ul
vi
Ul

U-

Un
I-Vn-,,

1= fl 0 f2 0 f3 0 f4 0 f5 0 f6 0 f7 0 f8

E vE

( 1-v) (1-v )

D vE E
(-2 (IV2 0

(1-v2) (l-v2) 0

0 0 E
2(1+v)

Given a uniform thickness, the volume integral can be changed to an area integral

resulting in

K = thickness J J BT D B dx dy = thickness J BTDB dA
area
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To make integration easier, a coordinate transformation is performed to transform
the area of the finite element to a unit square, resulting in:

11
K = thickness I j, BTDB I J I d~di

where I J I is the Jacobian discussed in section 3.2.5 The integration is done
numerically using Gaussian integration which leads to:

3 3
K= thickness 1 [BT D B I JI]1im

1=1 m=l

3.2.3 MASS MATRIX

Using the expression for the kinetic energy to calculate the mass matrix, results in

Kinetic energy = v NT p N dvol b

where the mass matrix is

M= E o NT p N dvol]

and N is defined below, p is mass density, and fi is a shape function defined in
section 3.2.6.

Ff1 0 f2 0 f3 0 f4 0 f5 0 f6 0 f 0 f8 0N= 0 f 10 f2 0 f3 0 f4 0 f 0 f6 0 f7 0 f8
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Given a uniform thickness, the volume integral can be changed to an area integral

resulting in

M = thickness f f NTp N dxdy= thickness f NT p, N dA
area

To make integration easier, a coordinate transformation is performed as 1'efore

resulting in:

1 1

M = thickness . { NTpN I J I d~dil

using Gaussian Integration leads to:

3 3
M= thickness _ Y, [NT p N IJlI]41im

1=1 m=l

3.2.4 JACOBIAN

The Jacobian is used in the coordinate transformation. The shape functions are

written in terms of the natural coordinates and not the actual x and y coordinates.

For a given element the displacements are approximated by

8 8
U=X uifi and V=X vifii=l1 i=l1



55

The derivatives of displacement with respect to x and y are

au 8 av 8
T- = Ui fi,x Y Vi fi,x

au 8 av 8
T- = I" Ui fi,y - ~ vi fi~y

i=l

Given:

_f ax ay aI

and letting

8 8
J11 =  xi fi,4 J12- = yifi,4

1=1 i=l

8 8
J2 1 = I xi fin J12 = yi fi,1

i=1 i=1

the determinant of the matrix becomes

I J I = J1 IJ 22 - J12 J2 1

inverting the matrix and solving for fi,x and fi.y leads to:
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1 J22 -J12S - 1 [ -J 2 1 J11 (3.2.5- 1)

Therefore, fix and fi.y can be obtained since the right hand side is defined.

3.2.5 SHAPE FUNCTIONS

The shape function are defined below in terms of the natural coordinates.

1

1
f 1 =  (1-4) (1-1) (-1-441)

1f2 = 1 (1+4) (1+T) (-1+4-+)

1 (12) (1+T") (-1-4+1)

f5 = I ( 1 _-) (1 7( 1 - 4+71

12

f"6 = I (+ ) (1-_12)2

f7 = I ( I1 -42 ) k I +1)

f8 = - (,_T,(-12)
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3.2.6 MESH SIZE CONSIDERATIONS AND ITS EFFECT ON THE

DISPERSION CURVE

This section presents the results of a number of parametric studies on the mesh size
for finite element analysis and the effect of mesh size on the dispersion curve.
Modal analysis using beam theory gave good maximum displacement values but did
not match the experimental dispersion curve. Finite elements, with the proper mesh
size, models the dispersion curve well for a beam with no damage.

The importance of mesh size is shown by example in this section. Nine different
meshes are compared. The number of elements through the depth was varied using
3, 6 and 12 elements. The number of elements along the length was varied using
21, 168, and 336 elements. This resulted in a test matrix 3 x 21, 3 x 168, 3 x 336,
6 x 21, 6 x 168, 6 x 336, 12 x 21, 12 x 168, and 12 x 336. Figure 3.2.6 - 1
shows diagrams of the meshes. For each case, the arrival time, the highest
frequency in FFT, and the dispersion curve were calculated. The dispersion curves
were calculated with the load at x=14", the first receiver at x=l 1", and the second
receiver at x=8". Table 3.2.6 - 1 gives the arrival times from the acceleration time
records at x=l 1" for each mesh. Table 3.2.6 - 2 gives the highest frequency in the
acceleration time record at x=1 1" for each mesh. Figures 3.2.6 - 2 through 3.2.6
- 10 show the acceleration time records, the FFT of the time records, and the
calculated dispersion curves for each mesh. The time records show that there is a
visible difference between the time records of coarse meshes and fine meshes. This

difference is seen in the arrival times of the pulse as well as the shape of the
response records. Only the first 200 microseconds are shown in the time record to
see the shape of the record better, the time record is 1024 microseconds long. In
calculating the dispersion curve, the entire time record was used and exponentially
windowed.

As can be seen the mesh size is important to insure the proper dispersion curve is
calculated. If the mesh is too coarse, higher frequencies are filtered out of the time
record, and the arrival time are smaller than they should be.
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A mesh size of 12 x 168 elements was selected for all subsequent analysis. The

dispersion curve was equal to the dispersion curve using 12 x 336 mesh.

Table 3.2.6 - 1 Arrival Time of Impulse, Beam: 21" x 6", XL: 14", XRI: 11"

Number of Number Elements along Length

Elements through
Depth

21 168 336

3 5 ,sec 20 gsec 20 psec

6 5 psec 20 usec 20 gsec

12 5 gsec 20 }gsec 20 sec

Table 3.2.6 - 2 Highest Frequency in FFT of Acceleration Record, Beam: 21" x
6", XL: 14", XRI: 11"

Number of Number Elements along Length

Elements through
Depth

21 168 336

3 120 kHz 390 kHz 445 kHz

6 170 kHz 395 kHz 445 kHz

12 270 kHz 395 kHz 445 kHz
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TD)
3.3 BEHAVIOR AS FUNCTION OF TD

The main goal of this section is to describe the behavior of a beam's response as a

function of the duration (TD) of the pulse load relative to the fundamental natural

period (TO) of the beam. A second goal is to identify the sophistication necessary to

model the behavior. Three different beams were analyzed with dimensions, 20' x

2' x 1', 48" x 6" x 6", and 21" x 6" x 6". For the 20' x 2' x 1' beam only modal

analysis was done. For the 48" x 6" x 6" and 21" x 6" x 6" beams, modal and

finite element analyses were conducted. For the finite element studies, a

convergence study was performed to determine the proper mesh. These data are

presented in section 3.2.6. A summary of maximum and free vibration response is

given in Tables 3.3 - 1 through 3.3 - 3. The load pulse length was varied based on

the natural fundamental period and the shortest pulse physically possible. As such,

the load varied from about 100 microseconds to 10 To.

A graphical comparison of modal and finite element displacement response is given

in Figures 3.3 - 1 through 3.3 - 5 for the different values of M and the 21" x 6"

beam. The load is at x=14" the first receiver is at x= 1" and the second receiver at

x=8". Each figure shows a time record (x=l 1"), the Fourier transform (x=l 1") and

the dispersion curve determined from the data. From these data the following

conclusions can be drawn. Based on ' there are three realms of response:

TOD

1. Static response 5 <

TO

2. Dynamic Magnification 0.1 < 1o < 5

3. Fraction of Static TD < 0.1TO
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Table 3.3 - 1 Maximum Response for 20' x 2' x 1' Beam For Load at 10' and
Response at 11' Using Modal Analysis

BEAM: 20' x 2' x 1'

MODAL
ID MAXIMUM STEADY STATE

(Fr) (Fl)

10 4.75 (10-7) 0.2 (10- 7 )

5 5.0(10-7) 1.0 (10-7)

2 5.9 (10-7) 2.3 (10- 7)

1 7.5 (10- 7 ) 6.0 (10- 7)

.5 7.0(10-7) 6.3(10-7)

.1 1.85 (10- 7) 1.85 (10-7)

.01 2.0 (10-8) 2.0 (10-8)

.001 1.95 (10- 9) 1.95 (10- 9)

STATIC 4.55 (10- 7)

Table 3.3 - 2 Maximum Response for 48" x 6" x 6" Beam For Load at 18" and
Response at 30" Using Modal and Finite Element Analysis

BEAM: 48" x 6" x 6"
FINITE ELEMENT AND MODAL

TD) MAXIMUM STEADY STATE

(IN) (IN)

10 5.0 (10-6) .5 (10-6)

5 5.4(10 -6 ) 1.0(10-6)

2 6.2(10-6) 2.7 (10-6)

1 8.5(10-6) 7.0(10-6)

.5 7.9(10-6) 7.9(10-6)

.1 2.1-(10-6) 2.1 (10-6)

.01 2.3 (10- 7) 2.3 (10-7)

STATIC 4.8 (10-6)
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Table 3.3 - 3 Maximum Response for 21" x 6" x 6" Beam For Load at 14" and
Response at 11" Using Modal and Finite Element Analysis

BEAM: 21" x 6" x 6" BEAM: 21" x 6" x 6"

FINITE ELEMENT MODAL
TD MAXIMUM STEADY MAXIMUM STEADY
To
To- (IN) STATE (IN) (IN) STATE (IN)

10 4.4(10-7) 0.15(10- 7) 3.4(10- 7) 0.4(10 -7)

5 4.7 (10-7) 0.8 (10-7) 3.8 (10-7 ) 0.8 (10- 7)

1 7.5 (10-7) 6.5 (10- 7) 6.0 (10-7 ) 4.5 (10-7)

.5 6.0 (10- 7) 5.75 (10-7) 5.5 (10- 7) 5.5 (l0- 7 )

.1 1.35 (10- 7) 1.35 (10- 7 ) 1.35 (10- 7) 1.35 (10- 7)

STATIC 3.396 (10-7) 3.396 (10- 7)

Note that the true demarcation lines between each realm of response were not

specifically determined. The above values give a guideline as to the types of
behavior and where they begin.

Both the modal beam analysis and the finite element analysis give comparable

maximum displacement values. There is good agreement between modal and finite

element data with the 48" long beam. For the 21", there is a difference in the

maximum values obtained, due to the fact that the beam is short and shear should be

considered. The modal analysis solution does not account for shear. As a result

the Fourier transform shows a different fundamental frequency for the system for

modal analysis and finite elements (smaller natural frequency for the latter). For the
TD

short duration loads ( 1oo = 0.1 or 114 microseconds), the arrival times of the wave

are also different from both models
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Figure 3.3 - 2 Modal Analysis and Finite Element Analysis; Displacement
Diagram, Frequency Diagram and Dispersion Curve; TI)/ T0 5, Beam (21" x 6"
x 6"), XL-XRlI-XR2 (14-11-8), Exponential Window
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The amplitude of the Fourier spectrum is larger for the finite element model than for

the beam solution for the higher frequencies. This can be seen better on a log scale,

as shown in Figure 3.3 - 5. The high frequency component is important in

obtaining the proper phase diagram.

The dispersion curves determined from the finite element and modal data

consequently do not match each other. The modal data oscillates about the

theoretical dispersion curve for flexural waves in a simple supported beam as gven

by Equation 3.1.5 - 1. The finite element data dispersion curve gives a curve

which resembles the experimental data. (A comparison of experimental and

analytical data is presented in section 5.1)

3.4 ANALYTICAL FORMULATION WITH AIR ON BOTH SIDES

The dispersion curve was also calculated directly (not using SASW) for a finite

thick layer with air on both sides, and a comparison was made with a SASW

derived dispersion curve using finite element data. If instead of a half space, there

is a layer of finite thickness with air on both sides the Rayleigh wave speed

equation is

s2 + K 2]4 8K 2 [s 2 + K 2 2 qs C2 - 1 + 1 2 2 K4 =0S1 [2 [ 16qs

(3.4- 1)

where

C1 = cosh (qh) SI = sinh (qh)

C2 = cosh (sh) S2 = sinh (sh)

h is the depth of the layer K -
x.
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2 =..(K2 2 ~2 =(K2
q - -Vp2,JI) Vs 2

Vr

Solving equation 3.4 - I for the normalized velocity ( ) as a function of

normalized frequency ( -- t ), the dispersion curve can be calculated. For

comparison purposes, the results are converted to velocity vs frequency by using
the same material properties ( E = 4515000 psi, V = .2, depth = 6") input into the
finite element program to calculate the time records used in the SASW method.
Figure 3.4 -1 shows the comparison between the dispersion curve determine from
solving Equation 3.4 - 1 and the SASW derived dispersion curves using finite
element data.

VELOCITY VS FREQUENCY
ANALYTICAL SOLUTION FOR FINITE LAYER WITH AIR ON BOTH SIDES

AND SASW (USING FINITE ELEMENT DATA, MESH: 12 X 168)
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Figure 3.4 - 1 Dispersion Curve Comparison: SASW (using Finite Element Data)
Vs Analytical (Finite Layer with Air on Both Sides)
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3.5 BOUNDARY CONDITIONS

To determine if the boundary conditions at the end of the beam affected the

dispersion curve a numerical study was conducted for different end conditions.

Figure 3.5 - 1 compares the dispersion curves determined using Fixed-Fixed,

Fixed-Free, Fixed-Simple, and Simple-Simple boundary conditions. These results

show that above 30 kHz, in the range where the phase velocity is properly

reproduced, the boundary conditions do not affect the dispersion curve. This is due

to the exponential window used on the data, which "zeroes-out" the time record

before the reflections from the boundaries arrive.
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COMPARISON OF DIFFERENT BOUNDRY CONDITIONS
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Figure 3.5 - 1 Dispersion Curve: Boundary Conditions
Analytical Data, Mesh Size 12 x 168, Beam (21" x 6" x 6"), XL-XR1-XR2 (14-
11-8), Exponential Window



80

3.6 TYPE OF MEASUREMENT

For a given impact one can obtain either acceleration, velocity, or displacement

time records. The effect of the type of record was only investigated analytically.

Only acceleration measurements were made experimentally. Figure 3.6 - I

compares the dispersion curve determined using acceleration and displacement

data. It can be seen that acceleration and displacement records give essentially the

same dispersion curve, particularly above 20 kHz and therefore over the complete

range of interest.

VELOCITY VS FREQUENCY
ACCELERATION AND DISPLACEMENT RECORDS
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Figure 3.6 - I Dispersion Curve: Acceleration vs Displacement
Analytical Data, Mesh Size 12 x 168, Beam (21" x 6" x 6"), XL-XR1-XR2 (14-
11-8), Exponential Window



CHAPTER FOUR

EXPERIMENTAL WORK

The objective of the SASW method is to calculate the surface wave dispersion

curve. The key to the dispersion curve is an accurate cross power phase diagram.

This chapter covers the experimental test matrix, the equipment used, test

specimens, test procedures, and gives recommendations on how to get a good

phase diagram.

4.1 TEST MATRIX

Four factors were considered in making up the test matrix: type of damage, face on

which the source-receiver array is located, spacing of the source-receiver array, and

relative location with respect to the damage of the source receiver array. The

source-receiver spacings used were 3" and 6".

Damage was limited to vertical cracks. The damage levels were No Damage, 1",
2", and 3" deep vertical cracks at 10.5" from the left end of the test specimen. The

cracks were saw cut to control the depth. The width of the cut was 1/8".

There were three possible faces on which to place the source-receiver array. They

are the top of the beam with the crack opening at the same face, the bottom of the

beam with the crack opening at the top, and on the side of the beam with the crack

opening at the top.

Several source-receiver array locations were tested. The array location was moved

across the beam from the left end to the right. When possible, symmetry was used

to reduce the number of times the accelerometer needed to be moved. As the

source-receiver array was moved across the beam with the crack fixed at 10.5"
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from the left end, three different situations arose. The first is when the source and

receivers are all on the same side of the crack. The second is when the crack is

between the receivers; and the third when the crack is between the source and first

receiver. Listed below are the different source-receiver locations tested; the first

number is the location of the source, the second and third number are location of

receivers one and two. Each location is the distance from the left end of the beam.

Figure 4.1 - 1 shows the different relative locations of damage and source-receiver

array.

3" SPACING
3 6 9

5 8 11

6 9 12

15 12 9

14 11 8

12 9 6

9 6 3

6" SPACING
1 2 8

1 5 11
1 6 12

1 7 13

19 13 7
18 12 6

17 11 5

14 8 2

10 8 2
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4.2 EQUIPMENT

Experimentally, two simultaneous acceleration measurements were made at a

known distance apart. The instrumentation, used to make the acceleration

measurements, included PCB 303A12 accelerometers powered by a PCB

Piezotronic Amplifier Model 483A07 which connected into a HP3562A Dynamic

Signal Analyzer. The data were stored on a 3.5" floppy disk via a HP9122 disk

drive. This is diagramed in Figure 4.2 - 1

The dynamic signal analyzer had dual channel capability with a frequency range

from 0 - 100 kHz and dual channel display of 801 data points. The analyzer is

capable of capturing the acceleration time records and doing a variety of calculations

afterwards. The calculations used were the cross power spectrum, linear spectrum

of each record, coherence, and the captured time records.

The stress waves were generated by an impact of either an instrumented hammer or

a ball bearing dropped from a given height. The ball bearing diameters used were

7/16", 5/16", 5/32", and 5/64".

4.3 TEST SPECIMENS

The test specimens were 21" x 6" x 6". For this research, no coarse aggregate was

used. The specimens were made of only cement and sand. The moist curing time

was 90 days, minimum. Some of the specimens cured longer. Since this study

only looked at detecting damage, the strength of the elements was not a concern.
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H-P 9122 Disk Drive

H-P3562A Dynamic Signal Analyzer
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Figure 4.2 - I Test Set-Up
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4.4 TEST PROCEDURES

The testing procedure for a given configuration was:

1. Attach the accelerometer to the test specimen at the proper location. The

accelerometers were installed by attaching a nut to the stud at the

base of the accelerometer and then gluing the accelerometer to the

concrete with super glue.

2. Set up the analyzer to capture the time records and calculate the cross
power spectrum phase.

3. Determine a reliable trigger, so a consistent time record could be

captured. This was accomplished by finding a consistent feature in

one of the time records and then using that feature to trigger the

recording of the time records.

4. Change the window duration until a satisfactory phase diagram is

determined. There is usually a range of window durations were the

phase diagram will converge. The goal is to find this range of

window durations for each measurement configuration.

5. If the measurement is still not satisfactory, increase the number of

samples in the average measurement. Typically, five samples per

measurement were sufficient.

6. Save the cross power spectrum, the coherence, the linear spectrum for
each record, and each time record to a floppy disk.

7. Calculate the dispersion curve from the phase of the cross power

spectrum.
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4.5 RECOMMENDATION TO GET A GOOD PHASE DIAGRAM

To obtain an accurate dispersion curve, an accurate phase diagram must be

determined. As such, the key to the dispersion curve is the phase diagram. A good
phase diagram is monotonically increasing/decreasing, with clear 21c phase shifts

(phase shifts in the correct places). To calculate a good phase diagram, the

following observations were made:

1. For each record, in the frequency domain, it is desirable to have energy

at every frequency in the range of interest. To increase energy level for a given

frequency range, there are three alternatives: to hit harder with a given source, to

use a source which generates the frequencies of interest, or to change the window

duration.

2. The resolution in the frequency domain becomes more important as the
spacing increases. The resolution is controlled by the sampling rate, At, and the

number of points used in the FFT. Analytically, the typical resolution was 122 Hz.

Experimentally, the resolution used was 125 Hz.



CHAPTER FIVE

UNDAMAGED BEAM

In this chapter, the dispersion curve for an undamaged beam is discussed. A

comparison of the analytically generated and experimentally determined dispersion

curves is made. The effect of load duration (or use of different sources) on the

calculated dispersion curve is discussed. The effect of source-array location on the

beam is shown. Finally, a comparison of dispersion curves determined from

different receiver spacings is given. It is important to know, if the load duration,

array location, and array spacing affect the dispersion curve in an undamaged
medium. If they do, this effect must be accounted for when testing in a damaged

medium, to insure that any change in the dispersion curve is a result of damage and

not due to the use of a different source, array location on the beam, or array

spacing. It should be noted that in this chapter and chapter six, any experimental

data with low coherence was masked.

5.1 ANALYTICAL VS EXPERIMENTAL DISPERSION CURVES

Figure 5.1 - 1 shows the velocity of propagation vs frequency for a three inch load-

receiver spacing. Experimental and analytical data are plotted together. There are

two interesting aspects of the graph. First, the experimental and analytical results

are in very good agreement over the range of frequencies of interest (above 30

kHz). The second is that in this frequency range the velocity is approximately

constant.
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VELOCITY VS FREQUENCY
ANALYTICAL VS EXPERIMENTAL

21" x 6" x 6"
XL: 5" XR1: 8" XR2: I11"

1.00010-

89.00010

-e-ANALYTICAL

4.000104

0 2.000 104 4.000 104 6.000 10 8.000 10 1.00010o
FREQUENCY (HZ)

Figure 5.1 - 1 Dispersion Curve: Experimental vs Analytical
Mesh Size 12 x 168, Beam (21 " x 6" x 6"), XL-XR 1-XR2 (14-11-8),
Exponential Window
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5.2 LOAD DURATION

The effect of load duration was explored both analytically and experimentally.
Longer duration load pulses have less high frequency component. It was of interest

to determine if the dispersion curve for higher frequencies was affected when there

was less high frequency component in the load. Analytically, time durations (TD)

of 50, 100, and 200 microseconds were used. Figure 5.2 - 1 shows that the results

are not affected by the duration, provided there is sufficient energy in the frequency
range of interest. Experimentally, this was investigated using an instrumented

hammer and several sizes of ball bearings. Figure 5.2 - 2 shows the experimental

data. Again the dispersion curve was insensitive to the load duration used. It
should be noted that the load duration of the instrumented hammer with concrete
varies between 100 - 150 microseconds and is the longest load duration used

experimentally. Long duration pulses have less high frequency energy in them,
which makes the hammer the critical case for experimental data.

VELOCITY VS FREQUENCY
COMPARISON OF DIFFERENT LOAD DURATIONS

21" x 6"x 6"
TD: VARY XL: 14" XRI: 11" XR2: 8"

1 9.000 105 -

10
4

6.000 10 - ............................... .i""'' "i ... ; ....... ....'"L "i'i 'L"L "i . ....., ...... "L "",, , ...... ... i . ....

-G- 50 MICRO SEC

5.000 10 . ...... L....-..L.................- ..... 100 M ICRO SEC

-- 200 MICRO SEC
4.0 l, i

0 2.000 0 4.000 10 6.000 104 8.000 104 1.000 105

FREQUENCY (HZ)

Figure 5.2 - 1 Dispersion Curve: Load Duration Varied
Analytical Data, Mesh Size 12 x 168, Beam (21" x 6" x 6"), XL-XRI-XR2 (14-
11-8), Exponential Window
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VELOCITY VS FREQUENCY
EXPONENTIAL WINDOW 1.5" SPACING

21 "x 6" x6"BEAM _ __HAM

5 LOPD: VARIABLE
1.600 10'-T

.....~ .. .. .. ..

U1.40010k 7/516

U8.200010' -

1.000 101-

8. 4.W010

2.000 l

0 - . . . . { . . . . . . . . I

0 2.000 104 4.0001le 6.0001le 8.000 1.0010'
FREQUENCY

Figure 5.2 - 2 Dispersion Curve: Load Duration Varied
Experimental Data, Beam (21" x 6" x 6"), XL-XR1I-XR2 (14-1 1-8), Exponential
Window
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5.3 ARRAY LOCATION ON BEAM

Since the beam was not considered a half space, it was of interest to determine if the

source-receiver location affected the dispersion curve. Figure 5.3 - I shows the

results of a number of numerical studies with different source and receivers

locations (but constant spacing). Figure 5.3 -2 shows corresponding experimental

data. These figures show that for a given spacing, the source-receiver array

location does not appreciably affect the dispersion curve. It is interesting to notice

that the location affects the experimental results more when the source is near the

edge but only for frequencies smaller than 30 kHz, below the range of interest.

VELOCITY VS FREQUENCY
SPACING: 3"

21" x 6" x 6" TD: .0001
VARY LOAD AND RECEIVER LOCATION

C 9.000 10... .......... ....... ...... ......
c on .... .- - .- - ...i . i ! i ...

8.000 104  .....-..-... ...... -- -... ... ....i.- ..-...... -

"e- 3-6-9
........... 5-8-1l6 .0 0 0 1 0 4 - "... '".. '.. '.." . "'... " "'".""."." ""..... . o - 1 ..

--- 6-9-12
x--->x- 12-9-6

5.000 104 ...... .' ..".'""'"" ."'"" ..... . + - 14-11-8
A - 15-12-9

4.000 104 i i i i i i i i

0 2.500 104 5.000104 7.500 104 1.000 105
FREQUENCY (HZ)

Figure 5.3 - 1 Dispersion Curve: Array Location Varied
Analytical Data, Mesh Size 12 x 168, Beam (21" x 6" x 6"), Exponential Window
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VELOCITY VS FREQUENCY
21" x 6" x 6" BEAM

NO DAMAGE

1.60010O 1

1.400 1 .- ... .. .... ..........

U 1.200 10 .....

z 1.00010-

8.000 le "'.
0 6.000 104 so

r-j 3-6&9
4

> 4.00010 . .*e 5--1

2000io 4 -0-~- 14-11-8

0 2.00010~ 4.0001le 6.000 104 8.0001le 1.00010
FRQUENCY

Figure 5.3 - 2 Dispersion Curve: Array Location Varied
Experimental Data, Beam (21" x 6" x 6"), Exponential Window
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5.4 SPACING

Different array spacings give similar velocities for wavelengths less than the

spacing. This can be seen in Figure 5.4 - 1, where 6", 3" and 1" array spacings are

compared analytically and in Figure 5.4 - 2 for experimental data. It should be

noted that a six inch wave length corresponds to about 12 kHZ, a three inch wave

length corresponds to about 28 kHZ, and a one inch wave length corresponds to

about 83 kHZ.

VELOCITY VS FREQUENCY
SPACING: VARIED.

21" x 6" x 6" TD: .0001

1.000 105 - - -VV

8.000 104

8.000 10L... L... L . . .-. .....-- .- . -.

7 6.00010 .

i>-7 -i T~ 6. 0....... ........ .... .
E--- 6-7-8

5.000104- 6-9-12

-4- 6-12-18
4.000104 -  '

0 2.500104 5.000104 7.500104 1.000105

FREQUENCY (HZ)

Figure 5.4 - 1 Dispersion Curve: Spacing Varied
Analytical Data, Mesh Size 12 x 168, Beam (21" x 6" x 6"), Exponential Window
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VELOCITY VS FREQUENCY
DIFFERENT ARRAY SPACING

BEAM: 21" x 6" x 6" EXPONENTIAL WINDW
1.4010~r rLOAD: INSTRUMENTEDnHAMER

1.20010o5

L 1.2000'-

Uj8.000 1O4 -

6.000 10k

1.5"
WJ 4.0000...........

2.000 1 0........... .. .. .........

-- 6"

0 2.000 104 4.00104 6.000104 8.0001le 1.000l10,
FREQUENCY (HZ)

Figure 5.4 -2 Dispersion Curve: Spacing Varied
Experimental Data, Beam (21 " x 6" x 6"), Exponential Window



CHAPTER SIX

DAMAGED BEAMS

The objective of this research was to evaluate the effectiveness of the SASW

method for the detection of cracks. This section presents analytical and

experimental data for five different source-receiver-crack configurations and

discusses the effect of the crack on the dispersion curve.

The five configurations investigated, shown in Figure 6 - 1, include load and

receivers to one side of the crack (left or right), crack between the two receivers,

crack between the source and receivers on the same face of the crack (top and

bottom of element) and source and receivers on the side face.

Tests were conducted on a beam 21" x 6" x 6". Two array spacings were used: 3"

and 6". Because the specimens were short (21"), it was often impossible to get the

full 6" spacing between the load and first receiver;, when this happened the distance

between the load and fast receiver was moved as close to 6" as possible. The

cracks were cut in three different beams to depths of 1 ", 2" and 3". The width of

the saw cut was an eighth of an inch. After the cracked beams were tested, the

beams were repaired and retested. Acceleration measurements were used to

calculate the dispersion curve, both analytically and experimentally.

Given the cross power phase diagram, there is a variety of ways to present the data,

such as phase, unfolded phase, coherence, velocity vs frequency, velocity vs

wavelength, and wavelength vs frequency. Each form presents the data in a

different light and may highlight different features. The phase diagram, unfolded

phase diagram and velocity vs frequency diagram will be presented. No coherence

data are presented. Throughout this section the notation of array location

(XL-XR1-XR2) stands for the location of the source from the left end, location of

receiver one from the left end and location of receiver two from the left end of the
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beam.

Saw cut

Sa cut

Saw cut

SSaw cut

Saw cut

Figure 6 - I SASW Test Configurations
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6.1 LOAD AND RECEIVERS TO THE SAME SIDE OF CRACK

When the load-receiver array is left or right of the crack as shown in Figure 6.1 -1

the dispersion curve is not affected by the crack. This will be shown for the three

inch and six inch spacings, as well as for experimental and analytical data. Since

the dispersion curve is not affected by the crack, this configuration is not effective

for detecting or sizing the crack

Figure 6.1 - 2 shows the experimental phase diagrams for array location 3-6-9 (3"

receiver spacing) for the beam with no damage, and the beams with 1 ", 2", 3"
vertical cut at 10.5" from the left end (midpoint). Figure 6.1 - 3 compares the

unfolded phase diagrams and Figures 6.1 - 4 and 6.1 - 5 show the experimental and

analytical dispersion curves for this array location.

As can be seen in the comparison of the phase diagrams and dispersion curves, the

crack does not affect the measurement for this configuration.

Saw cut

F' 6

Figure 6.1 - 1 Test Configuration 1
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UNFOLDED PHASE VS FREQUENCY
ARRAY LOCATION: 3-6-9
EXPERIMENTAL DATA

5 -

-G- ND

---2"

-10

~-15

0-20

0 2.00le 4.0010 6.0010 8.000Ile 1.00010
FREQUENCY

Figure 6.1 - 3 Unfolded Phase Diagrams, 3" Spacing, Experimental Data, Test
Configuration 1 : No Damage, 1", 2" and 3" Deep Crack
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VELOCIT VS FREQUENCY
ARRAY LOCATION: 3-6-9

2.600105EXPERIMENTAL DATA

1.40010 .o . . .? r . .-- ---- -' ~ '

2.000 5

4

6.00010 - 41 - .....-..... *...........

S4.00010~ ......*.............

0 2.000 104 4.000 104 6.000 le8.000 le~ 1.000 105
FREQUENCY

Figure 6.1 - 4 Dispersion Curve, 3" Spacing, Experimental Data, Test
Configuration 1 : No Damage, 1", 2" and 3" Deep Crack

VELOCITY VS FREQUENCY
ARRAY LOCATION: 3-6-9
VERTICAL CRACK AT 10.5"

ANAILYTICAL DATA 21" x 6" x 6"
1.000 10 rr-----I-------F

8.00010................. .. .... .. .. .................

7.00 le . .. .......... .. ~

6 .0 00 104 . ... ... ....

5.000 1160 4

4.000 le~.

0 2.000204 4.000le' 6.000le' 8.000le 1oo001
FREQUENCY (HZ)

Figure 6.1 - 5 Dispersion Curve, 3" Spacing, Analytical Data, Test Configuration
1: No Damage, 1", 2" and 3" Deep Crack
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Figure 6.1 - 6 shows the experimental phase diagrams for array location 1-2-8 (6"
receiver spacing) for the beam with no damage, and the beams with 1", 2", 3"

vertical cut at 10.5" from the left end. For the frequency range of 0 - 35 kHz the
phase diagrams are not consistent. There are 21E phase shift at points of low

coherence, usually around 12 kHz and 28 kHz, which must be taken into account

when unfolding the phase diagram. For the frequency range above 35 kHz, the

phase diagrams are consistent. Figure 6.1 - 7 shows the masked unfolded phase

diagrams where the unfolded phase is masked from 10 - 18 kHz for the records

from no damage, 1" and 2" beams. Figure 6.1 - 8 shows the experimental

dispersion curve using the masked phase diagram. Figure 6.1 - 9 shows the

analytical dispersion curve for same location. For the analytical data, the coherence
was always high and 27 phase ambiguities due to low coherence were not a

problem. Again, the six inch spacing shows that when the source-receiver array is

to one side of the crack, the crack does not affect the measurement, hence this

configuration is not effective at detecting the crack.
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PH-lSE- VS FRErQIENC'y
ARMjtA~r OCAflN 1-2-8

EXPEPVMNrA.L_ DATA-r

-4-

. ... ........ ... .. . . .>. . . . ... ..

o 2.000 104 4.000 104 6.000 104 8.000 104 1.000 105

-0

0 2.000 1O' A.000 10, 6 .000 lO' 8.000 0 1.000 100

Confguraion1: N Damge " 2"and3"_ Dee Crack
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UNFOLDED PHASE VS FREQUENCY
ARRAY LOCATION: 1-2-8
EXPERIMENTAL DATA

-e ND

-0- 2"
---X - 3"

w -10 ~ - . .m . 1

-.. 20 .....

0

-50
0 2.00010 4.000104 6.00010 8.000l 1.00010

FREQUENCY

Figure 6.1 -7 Unfolded Phase Diagrams, 6" Spacing, Experimental Data, Test
Configuration 1 : No Damage, 1V, 2" and 3" Deep Crack



105

VELOCITY VS FREQUENCY
ARRAY LOCATION: 1-2-8
E-XPERIM4ENTA.L DATA

1.0010~

1 .00010 -'............. ........

6.00010 ...-....

4.00010 - ...... ..

400 04 ........ .. . . . .. --.
4~~~~... ... . .. . . .. .- .

2000 104 ... ..- ...... ... .. . .. ... ............- 2-

0-

0 2.0)00104 4.000 104 6.000,104 S.000 *10 1.000,0
FREQUENCY

Figure 6.1 - 8 Dispersion Curve, 6" Spacing, Experimental Data, Test
Configuration 1: No Damage, 1 ", 2 " and 3 " Deep Crack

VELOCrTY VS FREQUENCY
ARRAY LOCATION: 1-2-8
VERTICA.L CRACK AT 10.5"

ANALYTICAL DATA 21" x 6" x 6"
1.000 10o

9.000 le.0 . I

6.000 10

40004 2000V000 000 ~oi'1000
FREQUENCY (HZ)

Figure 6.1 - 9 Dispersion Curve, 6" Spacing, Analytical Data, Test Configuration
1: No Damage, 1" 2 " and 3 " Deep Crack
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6.2 CRACK BETWEEN THE TWO RECEIVERS

6.2.1 CRACKS

When the the crack is between the two receivers and on the same face, as shown in

Figure 6.2.1 - 1, the phase is greater for the cracked condition than that for the

uncracked condition. Greater phase implies a lower velocity of propagation. This

trend is true for both analytical and experimental results.

This configuration (crack between the receivers) is effective at detecting cracks, as

seen in the following figures. This is true for the three inch and six inch spacings,

but the results are different for the two cases. The three inch spacing predicts lower

apparent velocity of propagation than the six inch spacing, and both spacings

predict lower apparent velocity of propagation than for the undamaged case.

As the depth of the crack changes, the changes in the dispersion curve as predicted

from finite element data and measured experimentally do not show good agreement,

also they do show the same trend.

Saw cut

/

Figure 6.2.1 - 1 Test Configuration 2
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Figures 6.2.1 - 2 to 6.2.1 - 5 show phase, unfolded phase, and the dispersion

curve for the three inch receiver spacing with the source-receiver array at 5-8-11. It

should be noted that for the records taken on the damaged beams the coherence was

low for all frequencies, as such no masking was attempted on the data and the data

was unfolded as measured. Figure 6.2.1 - 2 shows that the phase diagram from a

damaged section is different from that of an undamaged section. This difference

manifests itself in the dispersion curve, as shown in Figure 6.2.1 - 4, by a lower

apparent velocity of propagation for the damaged sections.

Figures 6.2.1 - 6 to 6.2.1 -9 show phase, unfolded phase, and the dispersion curve

for the six inch receiver spacing with the source-receiver array at 1-5-11. Again the

coherence was low throughout each of the damaged records and the records were

unfolded as measured. Figure 6.2.1 - 8 shows that the apparent velocity of

propagation is lower for the damaged beams than for the undamaged ones.

In an attempt to size the crack, the array configuration was chosen so that the

second receiver was just past the crack. In Vu's dissertation, it was shown that for

the location just past the crack, the transmission coefficient at that point (as

compared to other locations) had the greatest sensitivity to crack depth. As such the

array configuration of 5 - 8 - 11 and 1 - 5 - 11 were used, as this put the second

receiver just past the crack. For these array locations, the dispersion curve did

show the greatest variation with crack depth as compared to other array locations.

However, as can be seen in Figure 6.2.1 - 4 and Figure 6.2.1 -8, the dispersion

curve does not change in a consistent manner with change in crack depth, which

makes it hard to use the change in the dispersion curve to size the crack.

The effect of the actual position of the crack between the two receivers, is shown in

Figures 6.2.1 - 10 to 6.2.1 - 15 for both the three inch and six inch spacing.

These figures show that the calculated dispersion curve is not affected by the actual

crack position relative to the two receivers for a given spacing. Again, there is poor

agreement between the experimental and the numerical data.
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UNFOLDED PHASE VS FREQUENCY
ARRAY LOCATION: 5-8-11

EXPERIMENTAL DATA

20-

O0 i i. 

S-80-

0 2.000104 4.0010 6.000O le 8.0010 100010
FREQUENCY

Figure 6.2.1 - 3 Phase Diagrams, 3" Spacing, Experimental Data, Test
Configuration 2: No Damage, 1V, 2" and 3" Deep Crack
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VEL-OCITY VS FREQUENCY
ARRAY L-OCATION: 5-8-11

EXPERIMENTAL. DATA
1.20010~ 5 arf ~~'- - NE

8.000-0 2" S 
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........................................
6.00010 -- I 4i F* * ~ -
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0 2.000 104 4.000 104 6.000 104 81.000 104 1.000 105
FREQUENCY

Figure 6.2.1 - 4 Dispersion Curve, 3" Spacing, Experimental Data, Test
Configuration 2: No Damage, 1", 2" and 3" Deep Crack

VELOCITY VS FREQUENCY ND__
ARRAY LOCATION: 5-8-11
VERTICAL CRACK AT 10.5" .... (~..~
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Figure 6.2.1 - 5 Dispersion Curve, 3" Spacing, Analytical Data, Test
Configuration 2: No Damage, 1", 2" and 3 " Deep Crack
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Figure 6.2.1 - 6 Phase Diagrams, 6" Spacing, Experimental Data, Test
Configuration 2: No Damage, 1V, 2" and 3" Deep Crack
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UNFOLDED PHASE VS FREQUENCY
ARRAY LOCATION: 1-5-11

EXPERIMENTAL DATA

-20- \..........
~-0

<eN

--- 3"

-120-

0 2.000104 4.000 0 6.000 le 8.000104 1.00010
.FREQUENCY

Figure 6.2.1 - 7 Phase Diagrams, 6" Spacing, Experimental Data, Test
Configuration 2: No Damage, 1 ", 2" and 3" Deep Crack
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VELOC17TY VS FREQUENCY
ARRAY ]LOCATION: 1-5-11

EXPERIMENTAL DATA
1.600 10 - -a-N
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Figure 6.2.1 - 8 Dispersion Curve, 6" Spacing, Experimental Data, Test
Configuration 2: No Damage, 1", 2" and 3" Deep Crack
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VERTICAL CRACK AT 10.5" ....-
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Figure 6.2.1 - 9 Dispersion Curve, 6" Spacing, Analytical Data, Test
Configuration 2: No Damage, 1", 2" and 3" Deep Crack
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UNFOLDED PHASE VS FREQUENCY
ARRAY LOCATION: VARIED

EXPERIMENTAL DATA
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VEL~OCITY VS FREQUENCY
ARRAY LOCATION: VARIED

EX~PERIM~ENTrAL DATA
VERTICAJL CRACK: 2" DEEP AT 10.5" FROM L.EIT END
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Figure 6.2.1 - 11 Dispersion Curve, 3" Spacing, Experimental Data, Test
Configuration 2, 2" Deep Crack, Array Location Varied
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Figure 6.2.1 - 12 Dispersion Curve, 3" Spacing, Analytical Data, Test
Configuration 2, 2" Deep Crack, Array Location Varied
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UNFOLDED PHASE VS FREQUENCY
ARRAY LOCATION: VARIED
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VEL-OCITY VS FREQUENCY
ARRAY LOCATION: VARIED
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Figure 6.2.1 - 15 Dispersion Curve, 6" Spacing, Analytical Data, Test
Configuration 2, 2" Deep Crack, Array Location Varied
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6.2.2 REPAIRED CRACKS

After the beams were tested, they were repaired filling the cracks with Quickcrete -
Fast Setting Cement. The beams were retested with the crack between the

receivers. The dispersion curve from the repaired beams were similar to those of

the undamaged case for the 3" spacing and the 6" spacing.

Figure 6.2.2 - 1 shows the experimental phase diagrams for array location 5-8-11

(3" receiver spacing) for the beam with no damage, and the repaired beams with 1",
2", 3" vertical cut at 10.5" from the left end. Figure 6.2.2 - 2 compares the

unfolded phase diagrams and Figures 6.2.2 - 3 shows the experimental dispersion

curves for this array location. This shows the dispersion curve for the repaired

beams, where the second receiver was just past the repair, give the same results as
the undamaged beam.

Figures 6.2.2 - 4 to 6.2.1 -6 show phase, unfolded phase, and the dispersion curve

for the six inch receiver spacing with the source-receiver array at 1-5-11 on the
repaired beams. In unfolding the phase diagrams, the data was masked for the 10 -
15 kHz range in the 2" record, and 25 - 30 kHz range for the 1", 2" and 3" records.

Again, the dispersion curve for the repaired beams, where the second receiver was

just past the repair, give the same results as the undamaged beam.
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Figure 6.2.2 - 3 Dispersion Curve from Repaired Beams, 3" Spacing,
Experimental Data, Test Configuration 2: No Damage, 1 ", 2" and 3" Deep Crack
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Figure 6.2.2 - 5 Phase Diagrams from Repaired Beams, 6" Spacing, Experimental
Data, Test Configuration 2: No Damage, 1", 2" and 3" Deep Crack
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Figure 6.2.2 - 6 Dispersion Curve from Repaired Beams, 6" Spacing,
Experimental Data, Test Configuration 2: No Damage, 1", 2 " and 3 " Deep Crack
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6.3 CRACK BETWEEN LOAD AND FIRST RECEIVER

When the load is left of the crack and the receivers are right of the crack, as shown

in Figure 6.3 - 1, the dispersion curve is affected and the difference between

undamaged and damaged condition is evident. This configuration detects the crack.

The dispersion curve does not change in a consistent pattern with crack depth, and

thus the changes in the dispersion curve cannot be easily used to size the crack. It

is interesting to notice that in this case, the effect of the crack is to decrease the

phase and as such to increase the apparent velocity of propagation. The agreement

between the analytical and the experimental results is again poor although they both

show the same trend.

Saw cut

/t

Figure 6.3 - 1 Test Configuration 3
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Figures 6.3 - 2 to 6.3 - 5 show phase, unfolded phase, and the dispersion curve for

the three inch receiver spacing with the source-receiver array at 12-9-6. It should

be noted that for the records taken on the damaged beams the coherence was low

for all frequencies; as such no masking was attempted and the data was unfolded as

measured. Figure 6.3 - 2 shows that the phase diagrams from a damaged section is

different from that of an undamaged section. This difference manifests itself in the

dispersion curve, as shown in Figure 6.3 - 4, by a higher apparent velocity of

propagation in the high frequencies for the damaged sections.

Figures 6.3 - 6 to 6.3 - 9 show phase, unfolded phase, and the dispersion curve for

the six inch receiver spacing with the source-receiver array at 14-8-2. Again the

coherence was low throughout each of the damaged records and the records were

unfolded as measured. Figure 6.3 - 8 shows that the apparent velocity of

propagation is higher for the high frequencies in the damaged records.
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Figure 6.3 - 3 Phase Diagrams, 3" Spacing, Experimental Data, Test
Configuration 3: No Damage, 1", 2" and 3" Deep Crack



129

- - ND VEL.OC=T VS FRIEQUTENCY
K ARURAY LOCATION- 12-9-6

-. 2 EXPERIMENTAL DATA
3.000 105 x.- 3 'l1'-

2.500 105 -f

2.000 10 ...... *'f- - -* -'

1.500 10~

500 0 2000 001~601~801'10 0

FREQUJENCY
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Figure 6.3 - 5 Dispersion Curve, 3" Spacing, Analytical Data, Test Configuration
3: No Damage, 1", 2" and 3" Deep Crack
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Figure 6.3 - 7 Phase Diagrams, 6" Spacing, Experimental Data, Test
Configuration 3: No Damage, 1", 2" and 3" Deep Crack
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6.4 LOAD AND RECEIVER ON OPPOSITE FACE OF CRACK

When the load and the receivers are on top of the beam and the crack is on the

bottom, as shown in Figure 6.4 - 1, the analytical results predict no change in the
dispersion curve over the range of frequencies of interest ( where the results are

reliable). Also the experimental results show little change in the dispersion curve.

As such this configuration was not effective at detecting the crack.

Figure 6.4 - 2 shows the experimental phase diagrams for several array location

with a 3" receiver spacing for the beam with a 3" deep vertical cut at 10.5" from the
left end. The phase diagram for 15-12-9 is not shown in Figure 6.4 - 2, but shown
in the unfolded state in Figure 6.4 - 3. Figure 6.4 - 3 compares the unfolded phase

diagrams. In the 14-11-8 record, the phase was masked from 10 - 15 kHz where

there was a range of low coherence. Figures 6.4 -4 and 6.4 - 5 show the

experimental and analytical dispersion curves.

Similar results are seen for the 6" receiver spacings, and this configuration does not

detect the crack as shown in Figures 6.4 -6 through 6.4 -9. In unfolding the
phase diagrams, ranges of low coherence were masked. In the 1-5-11 record, the

data masked was 20 -30 kHz. In the 1-7-13 record, the data masked was 11 - 15

kHz.

.•. Ut m

Saw cut

Figure 6.4 - 1 Test Configuration 4
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Figure 6.4 - 3 Unfolded Phase Diagrams, 3" Spacing, Experimental Data, Test
Configuration 4, 3" Deep Crack, Array Location Varied
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Figure 6.4 - 7 Unfolded Phase Diagrams, 6" Spacing, Experimental Data, Test
Configuration 4, 3" Deep Crack, Array Location Varied
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Figure 6.4 - 9 Dispersion Curve, 6" Spacing, Analytical Data, Test Configuration
4, 3" Deep Crack, Array Location Varied
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6.5 LOAD AND RECEIVERS ON LATERAL SIDE OF BEAM

The load and receivers were put on the lateral side and at mid-height on the beam,

as shown in Figure 6.5-1. This configuration was only investigated
experimentally. For a three inch receiver spacing, the crack depth does not affect

the dispersion curve. Figure 6.5 - 2 shows phase diagrams for different depths of
crack and array location of 6-9-12. Figure 6.5 - 3 compares the unfolded phase

diagram. Figure 6.4 shows the corresponding dispersion curve.

For a six inch receiver spacing, the phase diagrams, shown in Figure 6.5 - 5,

appear to be affected. The coherence in all the records were low for all the
frequencies. For reference, the no damage record from 14-8-2 is used. In the
record for 1" deep crack, the phase is affected in the 25 -35 kHz range. For the 2"

deep crack, the range affected is 10 -35 kHz. For the 3" deep crack, the range

affected is 10-45 kHz. The higher frequencies are consistent through all levels of
damage. The data was not masked and was unfolded as measured. This is shown
in Figure 6.5 - 6 with the corresponding dispersion curves in Figure 6.5 - 7.

Saw cut

Figure 6.5 - 1 Test Configuration 5
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Figure 6.5 - 3 Phase Diagrams, 3" Spacing, Experimental Data, Test
Configuration 5: No Damage, 1", 2" and 3" Deep Crack
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Figure 6.5 - 6 Phase Diagrams, 6" Spacing, Experimental Data, Test
Configuration 5: No Damage, 1V, 2" and 3" Deep Crack
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Figure 6.5 -7 Dispersion Curve, 6" Spacing, Experimental Data, Test
Configuration 5: No Damage, 1", 2" and 3" Deep Crack



CHAPTER SEVEN

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 SUMMARY

The objective of this research was to assess the ability of surface wave
measurements and the SASW technique to detect crack damage in beam and column
elements. Damage was detected by a change in the dispersion curve between
undamaged and damaged states. The SASW (Spectral Analysis of Surface Waves)
technique was used to calculate the surface wave dispersion curve (phase velocity
vs frequency). The SASW method uses two simultaneous time records resulting
from an impact generated surface wave and taken at a given separation. Using the
time records, the phase of the cross power spectrum is calculated. The cross power
spectrum phase diagram represents the phase difference between the linear spectra
of the two records and is used to calculate the velocity and wavelength for each
frequency. The SASW method requires the time records to be windowed
(multiplied by a special function) before the cross power spectrum is calculated, the
phase diagram must also be unfolded to get the unfolded phase diagram which is
used in the velocity and wavelength calculations, when unfolding the phase
diagram, data with low coherence must be masked.

A parametric study was run on 21" x 6" x 6" test specimens. The damage form
studied was vertical cracks. Crack depths of 1", 2", and 3" were used. Two
receiver spacings were used: 3" and 6". The location of the source-receiver array
relative to the crack was varied, such that the crack was either outside the array,
between the receivers, between the source and first receiver, or on the bottom face
with the array on the top face. For each test configuration, a finite element analysis
was run and experimentally acceleration measurements were made. After the

cracked beams were tested, they were repaired and retested.

147
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7.2 CONCLUSIONS

1. The SASW method is an effective way of calculating the dispersion curve for a

beam or column for frequencies larger than a threshold value related to the member

depth. From the dispersion curve, one can calculate the modulus of elasticity of the

material.

2. Windows affect the smoothness and magnitude of the linear spectra and are

needed to obtain correct phase diagrams. (Windows are special time function. The

time records are multiplied by the window before the cross power spectrum is

calculated.) The window length used to calculate the phase diagram should not be

too long or too short. If the window is too long the cross power spectrum phase is

not smooth and may be difficult to unfold. If the window is too short, higher

frequency data may be eliminated giving the wrong phase diagram. The

recommended length of window should be as short as possible, while the linear

spectra phase is still monotonically increasing/decreasing.

3. In finite element analysis of wave propagation problems, the mesh size is

important. A mesh which is too coarse, will yield an arrival time shorter than it

should, lacking the proper high frequency content. The general rules of thumb

relating the element size to the frequency and wavelength of interest are applicable.

4. For the beam (21" x 6" x 6") analyzed, the boundary conditions did not affect

the calculated dispersion curve, when the proper window lengths were used.

5. Acceleration or displacement records should give essentially the same dispersion

curve. This is a theoretical conclusion. In practice the quantity to be measured is

controlled by instrumental accuracy and the ability to make the measurement.

6. The calculated dispersion curve is not sensitive to the length of the pulse used to

create the stress wave as long as there is enough energy in the frequency range of

interest.
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7. For an intact beam, using the appropriate windows, and a three inch array

spacing (half of the beam depth), the calculated dispersion curve is not sensitive to

the location of the load-receiver array on the beam. For the six inch array spacing
(equal to the beam depth), analytical results were indifferent to array location, but
experimentally the proper phase diagram was obtained only after masking the data
with low coherence.

8. For different load-receiver array spacings, there was good agreement between

the calculated velocities for wavelengths less than the spacing.

9. When the load-receiver array is on the same side as the crack, a change in the
dispersion curve can be used to detect cracks when the crack is between the
receivers or when the crack is between the load and the receivers. Other

configurations do not show a change in the dispersion curve. More studies are
necessary to establish whether there is clear relationship between the changes in the
dispersion curve, the length of the crack, and the receiver spacing.

10. After the cracks were repaired, there was no difference between the dispersion
curve measured on the repaired cracked section and the dispersion curve measured

on the intact section.

7.3 RECOMMENDATIONS FOR FUTURE RESEARCH

From this research a number of questions have been raised and identified as topics

for future research.

1. In this research a clearly open crack was used. The crack was saw cut to control
the depth. The width of the crack was an 1/8". In the future, it will be necessary

to see the sensitivity of the method to the degree of crack opening and crack width.
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The questions are whether hairline cracks can be detected and what happens when

the crack is pushed closed by the vibration or an imposed axial force.

2. The type of repair should be varied to determine the sensitivity to the repair

quality. The method shows potential as a quality control check for epoxy injection

repair techniques. There are two items of interest. First is the effect of using epoxy

with a stiffness significantly different than that of the concrete. The effect of the

impedance mismatch must be investigated. Second, the effect of air voids in the

repair, must be explored.

3. More studies are needed to correlate the size of the crack and spacing between

receivers with the changes in the dispersion curve. The discrepancies between the

experimental and analytical predictions in the presence of cracks must also be
reconciled.

4. The effect of aggregate and reinforcement also need to be investigated.



APPENDIX A

STRESS WAVES: BASICS

Wave propagation is the passage of energy through a system. As the energy passes

through the system, it causes stresses, strains, and displacements. The intent of

this section is to familiarize the reader with terms, behavior, and theories which

describe the energy passage through the system. For those familiar with stress

wave propagation, this is a review.

This section covers the basic information about stress wave propagation. It will

discuss the type of waves in a rod and a half space, phenomena such as reflections,

refraction, resonance, and dispersion, and derivation of the equations of motion for

a Rayleigh wave.

A.1 TERMINOLOGY

The period , T, is the time it takes a wave to travel one cycle.

1

The frequency, f, is defined as the number of cycles per second and is equal to I

The frequency expressed in radians per second is known as the circular frequency,

co, and is equal to 21tf or T

The wavelength, X, is the distance traveled in one cycle.

The wavenumber, k, is the number of radians per unit length and is equal to 21c

Impedance is defined as pV or the density times the velocity.
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A.2 TYPES OF STRESS WAVES

There are several types of stress waves and they are related to the direction of

propagation and the direction of particle motion (at a local level).

There are body waves and surface waves. There are two types of body waves, a

compression and a shear wave. When the particle motion is in the same direction as

the direction of propagation, the wave is called a dilatational or compressive wave.

When the particle motion is in a direction perpendicular to the direction of wave

propagation, the wave is called a shear wave. There are two types of shear

waves, SV- and SH-waves. SV-waves are shear waves where particle motion is

in a vertical plane and perpendicular to the path of wave propagation. SH-waves

are shear waves where particle motion is in a horizontal plane and perpendicular to

the path of wave propagation.

In a half space the surface wave is known as a Rayleigh wave. The energy

propagates along the surface and the particle motion follows an elliptical path.

decaying in amplitude with distance from the surface.

A.3 PHENOMENA AND DEFINITIONS

After encountering an impedance discontinuity, some energy is reflected and other

transmitted. The reflected energy is returned into the body from which it came.

After encountering an impedance discontinuity, the energy transmitted has a
different angle than the angle of incidence. This is referred to as refraction.

Diffraction is described as the bending of energy around a comer and described by

Huygen's theorem, which states, that all points on a wave front can be considered

as point sources for the production of spherical secondary wavelets. After a time,

t, the new position of the wave front will be the surface of tangency to these
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secondary wavelets. (Halliday and Resnick, pg 691).

Resonance is a condition encountered when the frequency of excitation is equal to

the natural frequency of the vibrating system. If a system is in a free vibration

condition, it will vibrate in its natural frequency.

Dispersion takes place when the stress wave velocity of propagation is frequency

dependent. There are several causes for dispersion. System with viscoelastic

properties are dispersive. Flexural waves are dispersive. In a system whose

properties change with depth, surface waves are dispersive.

Most approaches assume a plane wave front or a close approximation. This is

reasonable in the far field, but in the near field, the curvature of the wave is still
important. Lysmer defined a large distance as 2.5 X from the source

(Richart,Woods, Hall, pg91). Vu defines the far field as 10 - 20 X (Vu, pg46).

A.4 STRESS WAVES IN A ROD

The equations of motion for a longitudinal (compressive) and shear rod waves are:

p x = E a x where Vrod =

2 ax2 A

p a = G 2 where Vs =
at2 ax2 r

The solution for each equation can be written in terms of the modes as:

(I)
U(x) = Y Mode Shape [ (CI)n cos ,)nt + (C2)n sin (Ont]

n=1
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where the mode shapes and natural frequencies are given in the Table A.5 - 1 for

the given end conditions.

Table A.4 - 1 Wave Propagation in a Rod: Mode Shapes and Natural Frequencies

End Conditions Mode Shapes Natural Frequencies

ntx n7EVmd
Free-Free cos (---) (On L n=1,2,3,...

Fix-Free sin (E7 ) X - (on .tVd n=1,3,5,...

FxFxnltx nt Vrod

Fix-Fix sin (--L--) L On- n=1,2,3....

A.5 DERIVATION OF EQUATION OF MOTION (HALF SPACE)

This section will derive the wave equations, and then imposing the boundary

conditions develop the equation of motion for the Rayleigh wave. The surface

wave which propagates in a half space is the Rayleigh wave and is the primary

wave of interest in this study. This derivation is taken out of Soilynamic by

Richart, Woods and Hall. Timoshenko and Goodier also develop the equation of

motion in their book Theory of Elasticity.

Equilibrium of a stress block in the x-direction is:
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(>x+ a Ax ) AyAz - Ox Ay Az + "txy+ -aLAYJ AxAz

txz
- txy Ax Az + /xz+ a7zAz)AxAy - TxzAxAy=O (A -1)

Neglecting body forces and applying Newton's law in the x direction, equation (A -
1) leads to:

a2 u F(Yx a'rxy at xz"
p (AxAyAz) - , ax + jy + az AxAyAz

and finally:

a2 _ x ly axz (A -2)

P t - x +--y + az

This is the equation of motion in terms of stress for the x direction. A similar

process for the y and z direction lead to:

a 2 v yx a(Ty yz (A-3)
Pat2 ax +- ay + z(-

a2w aTzx a'lTzy aaz
Pat2  _x + -'y + az (A-4)

To solve the equations of motion, (A - 2) - (A - 4), in terms of displacement, the

stress-strain relationship and strain-displacement relationship are needed.
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The stress-strain relationships are:

Gx = X P + 2GEx Txy = Tyx= Gxy

Gy = X P + 2GEy txz = Tzx =G'yxz (A - 5)

Yz = X P_ + 2Glz Tyz = Tzy- G^yz

E vE
2(1+v) (l+v) (1-2v)

where

E: modulus of elasticity

G: shear modulus
v: Poisson's ratio

i, = Ex + ey + Sz = volumetric strain

C : strain

Y: shear strain

The strain-displacement relationships are:

au au OIv a i
Exy = Fx Y(xz =u ;_Y + i2Ox= wy-

-1-Vaua IY u aw (A6;w= " + 2 Fz ---- (A-6)

CZ= w YY v = 0V w 2 k=Cv Cu
(z i ;Yy = -+F- 2t - - ;-
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Substituting the strain-displacement equations (A - 6) into the stress-strain
equations (A - 5), then substituting the stress-displacement relationship into the
equations of motion, (A - 2) - (A - 4), leads to the equations of motion in terms of

displacement:

la2u a u a 2u (A 7).2 (X + G) j + G (W + +z

a2v a v a v (A 8)
p;- = (X + G) ay + G V + + 2

axa a 2 w+a w j)w
p-;-t2 = (X + G) Z-- + G ( x 2 + ,y2 +  --Iz 2 ) (A - 9)

A.7 SOLUTION OF THE EQUATION OF MOTION

There are two different solutions to the equation of motion; one solution describes
the dilatational (compression, P) wave, the other solution describes the distortional

(shear, S) wave.

Taking the partial derivative of (A - 7) with respect to x, (A - 8) with respect to y,
(A - 9) with respect to z, and then adding leads to:

_2 a2 p a2 e a 2p

P~~~~~a a)z G)(x 2+T
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2 a2p a2p 2

-t 2 = (x 2 + j 2 + z2 ) (A- 10)

where

2G

Note: Vrod ( Vrod = J is different from the P-wave velocity (VP = G

) in a half space. This is a a result of the lack of lateral restraint in a bar.

The second solution is determined by taking the partial derivative of (A - 8) with

respect to z, (A - 9) with respect to y, and then subtracting:

Pwj-v v~= [ D~aY 2 a a~Y + 2 a~ a v
P32 fw 2 (j2 ;2 _)

which leads to:

a 6) a 26, a2g6x a2a6Wp ;t = G (-5xT + 0Y -5 + z-- -2

26)x 2 a 2& a2Cx a2 Gx
S- Vs (--x2 + _y2 - (A-li)

where

Vs = 2'
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Through a similar process the distortional wave can be written for (0y and (Oz.

Equation (A - 10) represents the P-wave and equation (A - 11) represents the shear
wave.

A.7 RAYLEIGH WAVE VELOCITY

To determine the Rayleigh wave velocity a cubic equation must be solved for its
roots. This section will derive the cubic equation. By assuming the potential
functions 0 and ' and letting

u = -- + W (A- 12)

and

DO -- -(A- 
13)

The volumetric strain is

au + w 2

and the rotation in the x-z plane is defined by:

ai - ;- V 1d

and substituting (A - 12) and (A - 13) into (A - 7) and (A - 9) leads to
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2 4D a a _'iV 2 4 ) a ( 2 6

+ t = (X + 2G)z (vat ) at 2 )a
(A - 14)

a C' 2 2 X + 2G) a(V 2 (D) G __(V 2 q
~P at) (

(A- 15)

Equations (A - 14) and (A - 15) are satisfied if:

a+2 (_ (X+ 2G)V20 Vp2  V (A- 16)_4 = V 24(A 6t2  P

and

aT G V 2 T = Vs2 V 2 (A -17)

at2  p

Assuming a solution for a sinusoidal wave traveling in the positive x-direction, the

expressions for (D and 'T can be written:

(D = F(z) exp [ i (cot-Kx)] (A - 18)

P = G(z) exp [ i (cot-Kx)] (A - 19)

where

2n

Substituting (A - 18) and (A - 19) into (A - 16) and (A - 17) leads to:
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o2
2 2 F(z) = - K F2 (z) + F"(z) (A - 20)

Vp

C 2 G(z)=- K2 G 2(z) + G'(z) (A- 21)
Vp

Rearranging leads to:

- ( - F(z) - 0 (A - 22)

G"(z) - (K2 G(z) =0 (A - 23)

Letting:

q 2 =(K2 CO2I

~2 =(K2 Ws2

(A - 22) and (A - 23) become:

F"(z) q 2F(z)_= 0

G"(z) s 2 G(z) = 0

To solve for F(z) and G(z), assume a solution of the form:

F(z) = A1 exp (-qz) + BI exp (qz)
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G(z) = A2 exp (-sz) + B2 exp (sz)

Assume B, = B2 = 0, otherwise F(z) and G(z) will approach infinity as z

increases, and this lead to:

0 = AI exp [ -qz + i (wt-Kx)J (A - 24)

IF = A2 exp [ -sz + i (cot-Kx) (A - 25)

To solve for the constant A, and A2, the boundary conditions are used. The

stress at the free surface must be equal to zero, which leads to

(az=0 and txy=0 at z=0

where

(Yz= X P + 2GFz (A - 26)

txy = tyx = G'Yxy (A- 27)

Using (A - 24) and (A - 25) and the definition of u, w, and the strain displacement

equation, substituting into (A - 26) and (A - 27) leads to:

(az (@z=O) = Al [( + 2G)q - XK2 1 - 2iA 2GKs = 0

Txy (@z--O) = 2iAKq + A2 (s2 +K) = 0

Solving for the ratio AI  leads to:
A2 '

Al (+ 2G)q 2 -XK 2 10
A2 2iGKs
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A1  2iKq I =0
A2 (s2 + K 2 )

Eliminating the ratio A- leads to:

2A2'

(X + 2G)q - XK 2  2iKq
2iGKs = (s 2 + K2)

4qGsK2 = (s2 +K2)[(?.+2G)q - K 2 (A - 28)

Substituting s, q, into (A - 28), expanding, and rearranging leads to:

N6 - 8N 4  + (24 - l6a 2)N 2 + 16(a 2 - 1) = 0 (A - 29)

where

2 VR
2

a 2=VR
2

Vp
2

a2  G 1-2v Vs2

X+ 2G 2-2v Vp2

Equation (A - 29) is a sixth order equation in N or a cubic equation in N2 which
must be solved to get the speed of the Rayleigh wave. The equation is a function of

Poisson's ratio.

Another way to reduce Equation A - 28 is to substitute just q2 = (K2 P2)- ---- -Vp
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the right hand side of the equation. This leads to

4qGsK2 (s2 + K2)[(?+ 2G) (K 2 _W ) _4K2

expanding the right side and dividing through by G leads to

4qsK2  (s2 + K 2 )  2 2 02 2-qs G [?,K 2 -2 + 2 G K 2 " -Gc--, 2" XK 2

Vp Vp

reducing leads to

2 2 2 2 (X +2G)
4qsK2 =(s2 + K)[ 2 G + 2K ]

Vp

substituting 1-+ 2G Vp2 leads toG - Vs2

4qsK2 = (S2 + K [ 2  CO2 + 2K2]
Vp Vs2

which leads to

4qsK2  (S2 +k 2)  2 + 2_ K2

Vs 2  Vs

and finally

4qK2 = s2 +K2 s2 +K2 Is2 +K2 2 (A -30)4qsK 2 = (s 2 +K)[s 2 +K 2] =[s2 +K 2] 2 (-0

For a half space, the Rayleigh wave speed can also be determined using equation A

- 30 rather than A-29.
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If instead of a half space, there is a layer of finite thickness with air on both sides
the Rayleigh wave speed equation is

[S2 + K 24 2 8K 2 [s 2 + K 2] 2 qs C I C 2 - 1 6 K =0S 1 S2 + 22K 4

(A - 31)
where

C1 = cosh (qh) S1 = sinh (qh)

C2 = cosh (sh) S2 = sinh (sh)

h is the depth of the layer

2rt
K-21

q2 =K2 -v2J 52 =(K2 - v2J

Note that as h approaches oo, [C sC2-1 approaches 1 and Equation A -

31 reduces to

2 24 2 2 2 2 22 4[s +K2] 4  8 K [s + K I qs + 16q s2K = 0

which equals

[ [S2 + K 2 12  - 4qsK 2 ]2 = 0 which is same as a half space.

Also, if plane stress is used instead of plane strain, VP = E E
p(l-v 2)
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instead of Vp = P
p

A.8 RAYLEIGH WAVE DISPLACEMENTS

Given:

(D = A, exp [-qz + i (ot-Kx)]

T = A2 exp -sz + i (cot-Kx)]

and solving for u and w leads to:

u =- + -z-

u =-A iK exp [ -qz + i (ot-Kx)] - A2 s exp [-sz + i (ot-Kx)]

(A - 32)

and

W =E -f- -- x-

w =-A iK exp [-qz + i (cot-Kx)] - A2 iK exp [-sz + i (cot-Kx)]

(A - 33)

Given:

A-A 1 2iKg
A 2 = K2 )  (A -34)
(s 2+ K 2
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Substituting (A - 34) into (A - 32) and (A - 33) and solving for u(z) and w(z) leads

to:

{ 1}
u(z) = AliK - exp[- I(zK) ] + R exp[ - -(zK)s

K +1
K e 2 K

X exp [i (ot-Kx)]

w(z) Al K exp[ - K(ZC)]A { 1xp [ (zK)}

X exp [i (cot-Kx)I

where:

2 2
q 1 - I a22

K2- KV2 VP-2

2 2 2

K2- K2Vs2

For a given value of Poisson's ratio, equation (A - 29) is solved for N2. Given

N2 , U(z) and W(z) can be evaluated in terms of the wave number, K, for any

given value of Poisson's ratio.

A.9 VELOCITIES

This a summary of the stress wave velocities for quick reference.
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HALF SPACE ROD

P-WAVE Vp = +2G  VP=-F

p
S-WAVE Vs = '-Vs =

For the Rayleigh wave, the wave speed is dependent on Poisson's ratio. The exact

solution requires finding the roots of a cubic equation. Some approximation are:

VR (.90) Vs to (.95) Vs

V 2.86 VP 2  Vs 2  (Fitting, pg 86)

VR [ .87 + 1.12vs1

V87V(1 + v)1(Vu, pg 4)

VRV

In Shue's dissertation, a table for - is presented for a range of Poisson's ratios

on pg 215.
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A.10 ENERGY PARTITION

From an impact on a half space, energy is imparted into P-waves, S-waves, and

Rayleigh waves, with 7% going into the P-wave, 26% into the S-wave, and 67%

into the Rayleigh wave. (Richart, Hall, and Woods, pg 91)

A. 11 ATTENUATION

A wave loses energy through geometric spreading or through internal damping.

Geometric spreading is the spreading of the energy density as the wave propagates

out from the source resulting in a reduced amplitude as shown in Table A.12 - 1.

Internal damping is the result of internal friction which also causes the wave to lose

energy. (Richart, Hall, and Woods, pg 91)

Table A. 11 - I Geometric Damping

Body Surface

P-wave r1  r 2

S-wave r 1  r 2

R-wave r-0.5

Some methods of measuring damping are the Logarithmic Decrement and the Half

Power Bandwidth methods. Given the amplitude of displacements for the two

successive peaks of free vibration response (Y1 and Y2), the fraction of critical

damping can be calculated using the Logarithmic Decrement as:

(Paz, pg 30)
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where

8 is the logarithmic decrement

4 is the fraction of critical damping

Y1 is maximum amplitude of the first cycle

Y2 is maximum amplitude of the second cycle

The Half Power Bandwidth method requires the variation of the steady state

response amplitude with excitation frequency. The percent of critical damping is

calculated as:

f 2 - fI
= f 2 + fI

where

fi is taken at ± x Peak Response (Paz, pg 47)
F2

Also at resonance,

1

= 2 DMFmax

where

YmaxDMFmax Ys -= Dynamic Magnification Factor (Paz, pg 47)
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A. 12 REFLECTIONS

A.12.1 ONE DIMENSIONAL CASE

At an interface, displacements must be compatible and equilibrium must be

satisfied. When a wave encounters a discontinuity in impedance, depending on the

impedance ratio between the two sides of the interface, energy is reflected and

transmitted. That energy causes stresses and displacements in the materials. Teble

A. 12.1 - 1 gives the amplitude of the transmitted and reflected waves as a fraction

of the incident wave. (Short Course on Penetration Mechanics, pgs 2-28 - 2-31)

For the impedance ratio, R, there are five different possibilities. Table A. 12.1 - 2

gives the values for A,B,F, and G for the different possible impedance conditions.

A. 12.2 TWO DIMENSIONAL CASE

In the the two dimensional case compatibility and equilibrium must also be met, but

the results are more complicated due to the existence of two sets of variables and

stresses.

For a P-wave encountering an impedance discontinuity, there are four waves

generated: a reflected P-wave, a reflected SV-wave, a refracted P-wave, and a

refracted SV-wave. The angle of refraction is given by Snell's Law.

For the SV-wave encountering an impedance discontinuity, there are again four

waves generated: a reflected P-wave, a reflected SV-wave, a refracted P-wave, and

a refracted SV-wave. The angle of refraction is given by SneU's Law.
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Table A. 12.1 - 1 Definition for Reflected and Transmitted Amplitude Ratios

Displacement Stress

1-R 1-R
Reflected A I-IR F -IR-

2 IR 12R

Transmitted B 2 R G 2R
I+G 1+R

where

R = EV2 = Impedance Ratio
pV1

p is density

Vi is velocity in "i" material

Reflected wave displacement amplitudeA: Incident wave displacment amplitude

B: Transmitted wave displacement amplitude
Incident wave displacment amplitude

F: Reflected wave stress amplitude
Incident wave stress amplitude

Transmitted wave stress amplitude
Incident wave stress amplitude
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Table A. 12.l - 2 Displacement and Stress Amplitudes for Different Impedance

Ratios

Displacement S tress

Ratio Reflected Transmitted Reflected Transmitted

R =oo -1 0 1 2
(fixed end)

R =1 0 1 0 1

R <1 0 <A <1 1 <B <2 -1 <F<O 0<G<1

R=0 1 2 -1 0
(free end)
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Another phenomenon occurs when the SV-wave encounters an impedance

discontinuity. At a critical angle .here is no reflected or refracted P-wave but a P-

wave travelling along the interface. For angles larger than the critical angle the

reflected / refracted P-wave also travels along the interface.

For an SH-wave encountering an impedance discontinuity, there are two waves

generated: a reflected SH-wave and a refracted SH-wave.

For more detail on reflection and refraction in two dimensions the reader is referred

to Richart, Hall, and Woods, Soil Dynamics.



APPENDIX B

FOURIER TRANSFORMS: BASICS

Another means of representing response information is in the frequency domain.

This alternate representation does not provide any more or any less information than

the time domain representation, but it provides an alternate means of looking at the

data.

To transform time data from the time domain into the frequency domain, a Fourier

transform is used as discussed in this section. Most of the information for this

section was taken from class notes on "Digital Time Series Analysis and

Applications" by Dr Edward J. Powers at the University of Texas at Austin.

B.1 CONTINUOUS FOURIER TRANSFORMATION

In mathematical terms, the Fourier transform is:

+Inf

X(f) = f x(t) exp( -i 7irft) dt
-Inf

with the inverse Fourier transform as

+Inf

x(t) = f X (f) exp( i 21tft) df-If

The above two relationships are known as transform pairs.

175
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B.2 DISCRETE FOURIER TRANSFORMATION

Most data is collected in discrete form and not found in continuous form. To deal

with the discrete data, the Discrete Fourier Transform (DFT) is used.

Mathematically, the DFT is:

N-I
X(I) =N x(n) exp (-i 2.t 1_

n=O

and the inverse DFT is:

N-i

x(n) = X (1) exp (i 27 1 n

1=0

where 1 = 0,1,2,...,N-1 and n = 0,1,2,...,N-1 and N is the number of points in the

time record. x(n) is the time domain data. X(l) is the frequency domain data.

In the discrete case, both x(n) and X(l) are periodic.

In transition from the continuous to the discrete transform, two problems occur,

aliasing and leakage. Aliasing is where high frequency components imitate low

frequency components. This is a result of the sampling rate of the continuous time

record. To insure aliasing is not a problem, the Sampling Theorem requires the

sampling rate be twice the highest frequency represented in the time signal. The

consequence of aliasing is that the original continuous time signal cannot be

reproduced from the sampled signal.

The second problem is leakage. Leakage is a result of taking a finite time record

(where the continuous case goes to infinity). Leakage always occurs with discrete

data. The method u. ed to minimize leakage is to multiply the sampled time record
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by a special function called a window before the DFT is computed. Windows will

be discussed later in this section.

The relationship between the continuous Fourier transform and the discrete Fourier

transform is that the DFT (at freq = 1) is equal to the value of the continuous

transform at (lAf) multiplied by Af. That is:

X(I) = X(1Af)*Af l =0,1,2,....,N-1

DFT Sampled Continuous Transform

Another interesting relationship is that between the DFT and a complex Fourier

series expansion. A complex Fourier series can be used to represent any time data.

The DFT, X(l) , is equal to the complex Fourier series coefficient, X1, where XI

characterizes a sampled, periodic time series x(t).

The discrete Fourier transform is calculated using an efficient algorithm called a

Fast Fourier Transform (FFT). The algorithm requires the number of points in the

transform to be equal to 2 N where N is an integer. In doing an FFT, there are two

parameters of interest, the sampling rate, At between points, and the number of

points in the transform, NPT. The sampling rate, At, controls the range of

frequencies in the frequency domain, and NPT controls the resolution in the

frequency domain.

f upper -
At

Af=-
At * NPT
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B.3 CONVOLUTION AND CORRELATION

Two other important concepts are convolution and correlation. The convolution is

used to calculate the response of a system if the impulse response function and -,he
load function are known. Convolution is defined mathematically as:

+Inf

h(t) convoluted with x(t) = [h(t) x(t-t) dt
-Inf

and is a transform pair with H(f) * X (f)

where

H(f) is the Fourier transformation of h(t)
X(f) is the Fourier transformation of x(t)

Convolution of two time records in the time domain is a transform pair with the
multiplication of the Fourier transform of the individual records.

Correlation is a measure of the linear association between y(t) and x(t). Correlation

is defined mathematically as:

y(t) correlated with x(t)

T/2

Ryx(T) = lim (T --> 0) 1 y(t) x(t-t) dt

and is a transform pair with Y(f) * X (f), where

X (f) is complex conjugate of X(f).
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Correlation of two time records in the time domain is a transform pair with the

multiplication of the Fourier transform of the first record and the complex conjugate

of the Fourier transform of the second record.

B.4 WINDOWS

Windows are special functions used to reduce leakage. When a finite length record

is used, this is the same as multiplying the infinite record with a rectangular

window. As mentioned earlier a multiplication in one domain is a convolution in

the other domain. As such the window multiplication in the time domain is a

convolution in the frequency domain. In this research several windows were used.

They include Hanning, rectangular, and exponential windows:

Hanning: = I1- cos ( 2 )

Rectangular: = 1 O<t <T

= 0 O.W.

Exponential = Exp (t

The Hanning window is used for periodic and random data. The exponential

window is used for decaying processes.

In addition to reducing leakage, windows act like a weighting function where some

parts of the record are emphasized more than other. The effect of windows are

discussed in section 4.3.2.
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B.5 CROSS POWER SPECTRUM

The cross power spectrum of a stationary random process and the cross correlation

function are transform pairs. The power spectrum is measure of the energy in the
record at that frequency. The power spectrum is defined as, Sxy, where

1

Sxy (f) = lim (T --> oo) 1 E {X(f) Y*(f)1

The power spectrum is a complex number and can be represented by its amplitude

and phase, where

Sxy (f) = I Sxy (f) Iexp(i0xy(f))

and

I Sxy (f) I -/Imag Sxy (f) 2 + Real Sxy (f) 2

=Imag Sxy(f) 1
1 Real Sxy (f)

The phase information, 0xy (f), is of interest. It tells the phase difference as a

function of frequency between the two measuring points. That is

OXY (f) = 0x (f) - 0y (O

where 0 x (f) and Oy (f) denote the phases of the Fourier transforms of x(t) and y(t)

respectively.
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The power spectrum is an even function. Another definition is a one sided power

spectrum, Pxy (1). In discrete form

Pxy (1) = 2 Ix(1) Y*(1)I 1 = 1, 2 1
P~~1) 2 ,2.... -- 1

1 Ix(1) Y*(I)l I = 0 N

B.6 COHERENCE

For a two sided power spectrum, coherence is defined as

ISxxP2

xy2 Sxx Syy

or for a one sided power spectrum as

y Y2 = IPxyx 2

x2 Pxx Pyy

and is 0 < 'Y 2 < 1. Coherence is a measure of the degree of linear correlation

between x(t) and y(t).



APPENDIX C

OTHER APPROACHES TO DAMAGE DETECTION AND CRACK SIZING

This section will provide background on other studies methods which use stress

waves to detect cracking and defects. Some methods used in the past to determine

the size and location of cracks are the P-wave arrival time, imaging systems, time

separation of different waves (surface and mode converted), and a periodic

variation in the high frequency spectrum.

C. 1 P-WAVE ARRIVAL

One of the first methods used to determine cracks and crack depth, used the arrival

time between a transmitter and a receiver or pulse velocity. To detect a crack, one

receiver is incrementally moved away from the transmitter. Plotting separation

distance vs arrival time, the plot should be a straight line until a crack is encountered

at which point arrival time should increase changing the slope of the plot.

To size the crack, the receivers are put equidistant on both sides of the crack. The

arrival time is measured and the depth is calculated using the formula.

depth = x Ts2 -1

where

depth = crack depth

Tc2 = travel time around crack

Ts2 = travel time without crack

x = distance between the crack and the receivers
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C.2 IMAGING SYSTEM

C.2.1 SINGLE AND DOUBLE TRANSDUCER

Single and double transducer methods work off a reflected echo or a transmitted

signal. There are three types of scanning used by this method. They are called A-

scanning, B-scanning, and C-scanning.

A-scanning is where the transmitting transducer is placed directly against the object

to be examined. An acoustic pulse passes into the object and is reflected by

acoustic impedance discontinuities. The returned echo signal is then received by the

same transducer and amplified and displayed as a function of time on the

oscilloscope. (E1-Sherbini, pg 8)

B-scanning, uses the return echo signal to modulate the intensity of an oscilloscope

spot, while time delay is represented by horizontal position, and the mechanical

position along the surface of the object is represented by the vertical position on the

oscilloscope. (EI-Sherbini, pg 8)

C-scanning, utilizes two focused transducers in a confocal geometry. The

transmitted signal is chiefly acted upon by the small region at the focal point of the

transducer. It is then received, detected and displayed as an intensity modulation of

a TV monitor or recorded on paper. The transducers are scanned synchronously, in

a raster mode, and the image is built up point by point. The advantage of this

method is that good resolution can be achieved and a high quality transmission

image of the object can be observed. (EI-Sherbini, pg 10)

C.2.2 MULTIPLE TRANSDUCERS

Other means of detecting cracks are through imaging systems which require

multiple transducers to record the response of the system. Given the response of
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the multiple transducers, the image of the object causing the response is

constructed based on an inversion process. The inversion process is not presented

in this section. A good review of imaging systems is given by EI-Sherbini who

explains the inversion process in detail. Two methods which use this approach are

holography and tomography. Tomographic systems give a picture of a cross

section. A holographic system is based on the principle that when a wave,

diffracted by an object, is present simultaneously with a suitable coherent reference

wave on a recording medium, the recorded interference fringes form a hologram

that contains the amplitude and phase of the diffracted wave. It required the

invention of the laser to work.

C.3 SEPARATION OF WAVES IN WAVEFORM

Ma studied the interaction of Rayleigh waves with surface discontinuities in steel.

The purpose of his research was to develop a way of separating the various

components of the transmitted Rayleigh waves to find their properties and then to

use them to predict the depth of a defect.

Ma suggested two methods of predicting crack depth. Both were conditioned on

being able to identify parts of the transmitted wave train. The fist method was

based on the time separation of two different parts of the transmitted wave, which

were attributable to certain interaction between the incident wave and the crack. The

location of the transducers was important to be able to correctly identify each part of

the record. When the transducers were not properly spaced, other interactions

tended to cover up the interaction of interest

The second method suggested was based on identifying a specific part of the wave

attributable to the Rayleigh wave which is a mode converted wave from a shear

wave hitting the surface, as a result of the incident Rayleigh wave interacting at the

tip of the crack. This portion of the wave was Fourier transformed. The resulting

transform had a distinctive cutoff frequency. An empirical equation relating the
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crack depth and cutoff frequency was then developed using a least squares fit.

Given this line and the experimentally determined cutoff frequency, the depth of the

crack can be predicted.

CA PERIODIC VARIATION IN HIGH FREQUENCY SPECTRUM

Fitting also studied the interaction of Rayleigh waves with defects. He showed that

in the high frequency range or short wavelength relative to the crack size the

backscattered and forward scattered amplitude spectra exhibited a periodic variation.

High frequency was defined as K * d > 10, where K= 21c / ) and d is the crack

depth. The periodic variation was attributed to reverbe- -tions of Raylcigh waves on

the crack faces. The time spacing of reverberation depeno. on crack length and so

the periodicity of the variation in the spectra is related to crack depth. The equation

used was

It _VR

Depth 1K -A K 2 Af

where

VR is the Rayleigh wave velocity

Af is the "average" interval between peaks in the frequency spectra of the

back or forward scattered fields.
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